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Abstract—This paper presents a study of three important issues of the color pixel

classification approach to skin segmentation: color representation, color

quantization, and classification algorithm. Our analysis of several representative

color spaces using the Bayesian classifier with the histogram technique shows that

skin segmentation based on color pixel classification is largely unaffected by the

choice of the color space. However, segmentation performance degrades when

only chrominance channels are used in classification. Furthermore, we find that

color quantization can be as low as 64 bins per channel, although higher histogram

sizes give better segmentation performance. The Bayesian classifier with the

histogram technique and the multilayer perceptron classifier are found to perform

better compared to other tested classifiers, including three piecewise linear

classifiers, three unimodal Gaussian classifiers, and a Gaussian mixture classifier.

Index Terms—Pixel classification, skin segmentation, classifier design and

evaluation, color space, face detection.
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1 INTRODUCTION

IN recent years there has been a growing interest in the problem of
skin segmentation, which aims to detect human skin regions in an
image. Skin segmentation is commonly used in algorithms for face
detection [1], [2], hand gesture analysis [3], and objectionable
image filtering [4]. In these applications, the search space for
objects of interest, such as faces or hands, can be reduced through
the detection of skin regions. To this end, skin segmentation is very
effective because it usually involves a small amount of computa-
tion and can be done regardless of pose.

Most existing skin segmentation techniques involve the

classification of individual image pixels into skin and nonskin

categories on the basis of pixel color. The rationale behind this

approach is that the human skin has very consistent colors which

are distinct from the colors of many other objects. In the past few

years, a number of comparative studies of skin color pixel

classification have been reported. Jones and Rehg [4] created the

first large skin database—the Compaq database—and used the

Bayesian classifier with the histogram technique for skin detection.

Brand and Mason [5] compared three different techniques on the

Compaq database: thresholding the red/green ratio, color space

mapping with 1D indicator, and RGB skin probability map.

Terrillon et al. [6] compared Gaussian and Gaussian mixture

models across nine chrominance spaces on a set of 110 images of

30 Asian and Caucasian people. Shin et al. [7] compared skin

segmentation in eight color spaces. In their study, skin samples

were taken from the AR and the University of Oulo face databases

and nonskin samples were taken from the University of Washing-

ton image database.

In this paper, we present a comprehensive study of three
important issues of the color pixel classification approach to skin
segmentation, namely color representation, color quantization, and
classification algorithm. We investigate eight different color
representations, seven different levels of color quantization, and
nine different color pixel classification algorithms. To support this
study, we have created a large image database consisting of
4,000 color images together with manually prepared ground-truth
for skin segmentation and face detection. The paper is organized as
follows: color representations and color pixel classification algo-
rithms are described in Section 2, results of our analysis and
comparison are presented in Section 3, and conclusions are given
in Section 4.

2 SKIN COLOR CLASSIFICATION

The aim of skin color pixel classification is to determine if a color
pixel is a skin color or nonskin color. Good skin color pixel
classification should provide coverage of all different skin types
(blackish, yellowish, brownish, whitish, etc.) and cater for as many
different lighting conditions as possible. This section describes the
color spaces and the classification algorithms that will be
investigated in this study.

2.1 Color Representations

In the past, different color spaces have been used in skin
segmentation. In some cases, color classification is done using
only pixel chrominance because it is expected that skin segmenta-
tion may become more robust to lighting variations if pixel
luminance is discarded. In this paper, we investigate how the
choice of color space and the use of chrominance channels affect
skin segmentation. We should note that there exist numerous color
spaces but many of them share similar characteristics. Hence, in
this study, we focus on four representative color spaces which are
commonly used in the image processing field [8]:

. RGB: Colors are specified in terms of the three primary
colors: red (R), green (G), and blue (B).

. HSV: Colors are specified in terms of hue (H), saturation (S),
and intensity value (V) which are the three attributes that
are perceived about color. The transformation betweenHSV
and RGB is nonlinear. Other similar color spaces are HIS,
HLS, and HCI.

. YCbCr: Colors are specified in terms of luminance (the
Y channel) and chrominance (Cb and Cr channels). The
transformation between YCbCr and RGB is linear. Other
similar color spaces include YIQ and YUV.

. CIE-Lab: Designed to approximate perceptually uniform
color spaces (UCSs), the CIE-Lab color space is related to
the RGB color space through a highly nonlinear transfor-
mation. Examples of similar color spaces are CIE-Luv and
Farnsworth UCS.

2.2 Classification Algorithms

Several algorithms have been proposed for skin color pixel
classification. They include piecewise linear classifiers [9], [10],
[11], the Bayesian classifier with the histogram technique [4], [12],
Gaussian classifiers [2], [13], [14], [15], and the multilayer
perceptron [16]. The decision boundaries of these classifiers range
from simple shapes (e.g., rectangle and ellipse) to more complex
parametric and nonparametric forms.

2.2.1 Piecewise Linear Decision Boundary Classifiers

In this category of classifiers, skin and nonskin colors are separated
using a piecewise linear decision boundary. For example, Chai and
Ngan [9] proposed a face segmentation algorithm for a videophone
application in which a fixed-range skin color map in the CbCr
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plane is used. Sobottka and Pitas [11] proposed a set of fixed skin

thresholds in the HS plane. These two approaches are based on the

observation that skin chrominance, even across different skin

types, has a small range, whereas skin luminance varies widely.

Garcia and Tziritas [10] constructed a more complex skin color

decision boundary that is made up of eight planes in the YCbCr

space.

2.2.2 Bayesian Classifier with the Histogram Technique

The Bayesian decision rule for minimum cost is a well-established

technique in statistical pattern classification [17]. Using this

decision rule, a color pixel x is considered as a skin pixel if

pðxjskinÞ
pðxjnonskinÞ � �; ð1Þ

where pðxjskinÞ and pðxjnonskinÞ are the respective class-condi-

tional pdfs of skin and nonskin colors and � is a threshold. The

theoretical value of � that minimizes the total classification cost

depends on the a priori probabilities of skin and nonskin and

various classification costs; however, in practice � is often

determined empirically. The class-conditional pdfs can be esti-

mated using histogram or parametric density estimation techni-

ques. The Bayesian classifier with the histogram technique has

been used for skin detection by Wang and Chang [12] and Jones

and Rehg [4].

2.2.3 Gaussian Classifiers

The class-conditional pdf of skin colors is approximated by a

parametric functional form, which is usually chosen to be a

unimodal Gaussian [2], [14] or a mixture of Gaussians [13], [15]. In

the case of the unimodal Gaussian model, the skin class-

conditional pdf has the form:

pðxjskinÞ ¼ gðx;ms;CsÞ

¼ ð2�Þ�d=2jCsj�1=2exp � 1

2
ðx�msÞTC�1

s ðx�msÞ
� �

;

ð2Þ

where d is the dimension of the feature vector, ms is the mean
vector and Cs is the covariance matrix of the skin class. If we
assume that the nonskin class is uniformly distributed, the
Bayesian rule in (1) reduces to the following: a color pixel x is
considered as a skin pixel if

ðx�msÞTC�1
s ðx�msÞ � �; ð3Þ

where � is a threshold and the left hand side is the squared
Mahalanobis distance. The resulting decision boundary is an
ellipse in 2D space and an ellipsoid in 3D space. In this study, we
also investigate the approach of modeling both skin and nonskin
distributions as unimodal Gaussians. In this case, it can easily be
shown that x is a skin pixel if

ðx�msÞTC�1
s ðx�msÞ � ðx�mnsÞTC�1

ns ðx�mnsÞ � �; ð4Þ

where � is a threshold and mns and Cns are the mean and the
covariance of the nonskin class, respectively. Another approach is
to model both skin and nonskin distributions as Gaussian mixtures
[13], [15]:

pðxjskinÞ ¼
XNs

i¼1

!s;igðx;ms;i;Cs;iÞ; ð5Þ

pðxjnonskinÞ ¼
XNns

i¼1

!ns;igðx;mns;i;Cns;iÞ; ð6Þ

The parameters of a Gaussian mixture (i.e., weights !, means m,
covariances C) are typically found using the Expectation/
Maximization algorithm.

2.2.4 Multilayer Perceptrons

The multilayer perceptron (MLP) is a feed-forward neural network
that has been used extensively in classification and regression. A
comprehensive introduction to the MLP can be found in [18].

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 27, NO. 1, JANUARY 2005 149

Fig. 1. Sample images from the ECU face and skin detection database. (a) Original image (Set 1). (b) Face segmented image (Set 2). (c) Skin segmented image (Set 3).

TABLE 1
Data Sets of the ECU Database

TABLE 2
Statistics of the Skin Data Set



Compared to the piecewise linear or the unimodal Gaussian

classifiers, the MLP is capable of producing more complex decision

boundaries. In [16], we used the MLP to classify skin and nonskin

pixels in the CbCr plane. In that work, only 100 images were used

for training and testing the MLP. In this paper, the MLP technique

is extended to a 3D color space and tested on a much larger data

set.

3 EXPERIMENTAL RESULTS AND ANALYSIS

A comprehensive set of experiments was performed to analyze the

effects of color representation and color quantization on skin

segmentation and to compare different classification algorithms.

Before delving into the analysis and comparison parts, we first

explain the data preparation process.

3.1 ECU Face and Skin Detection Database

The data was taken from the ECU face and skin detection database

that we created at Edith Cowan University. The database has five

data sets (see Table 1). Set 1 consists of 4,000 original color images:

about 1 percent of these images were taken with our digital

cameras and the rest were collected manually from the Web over a

period of 12 months in 2002-2003. The image sources are too

numerous to list here but they were chosen to ensure the diversity

in terms of the background scenes, lighting conditions, and face

and skin types. The lighting conditions include indoor lighting and

outdoor lighting; the skin types include whitish, brownish,

yellowish, and darkish skins. Sets 2 and 3 contain the respective

face and skin detection ground-truth for the images in Set 1. The

ground-truth images were meticulously prepared by manually

segmenting the face and skin regions. The skin segmented images

consist of all exposed skin regions such as facial skin, neck, arms,

and hands. A rough categorization of the data set into different

groups of skin types and lighting conditions is given in Table 2.

Set 4 consists of 12,000 frontal-upright face patterns that we

manually cropped from Web images, whereas Set 5 consists of

2,000 large landscape photos. Sample images from the database are

shown in Fig. 1.

3.2 Analysis of Skin Color Pixel Classifiers

The data used for training and testing in our experiments are
summarized in Table 3. For training, skin pixels were taken from
skin segmented images and nonskin pixels from the complements

of the skin segmented images. For testing, the skin color pixel
classifiers were applied to the test images; no extra postprocessing
was used. Each output image generated by a classifier was
compared pixel wise with the corresponding skin segmented
ground-truth. The segmentation performance was measured in
terms of the correct detection rate (CDR), the false detection rate
(FDR), and the overall classification rate (CR). The CDR is the

percentage of skin pixels correctly classified; the FDR is the
percentage of nonskin pixels incorrectly classified; the CR is the
percentage of pixels correctly classified.

In our study, nine skin color pixel classifiers were compared.

These classifiers are summarized in Table 4. For the three
piecewise linear classifiers, we took the fixed parameters directly
from the original references [9], [10], [11]. For the Gaussian mixture
classifier, we used the model parameters published by Jones and
Rehg [4]. For the other five classifiers whose parameters were not
available to us, we constructed the classifiers using our training
data. Three unimodal Gaussian classifiers were tested: a

2D Gaussian classifier of skin in the CbCr plane, a 3D Gaussian
classifier of skin in the YCbCr space, and a classifier with
3D Gaussians for both skin and nonskin the YCbCr color space.
For the Bayesian classifier with the histogram technique, we used
the RGB color space and histograms with 2563 bins. The three
unimodal Gaussian classifiers and the Bayesian classifier were
constructed using the entire training set of 680.7 million samples

presented in Table 3. For the MLP classifier, we extracted a training
set of 30,000 skin and nonskin samples and trained the network
using the Levenberg-Marquardt algorithm. Different network sizes
and activation functions were investigated but we only report the
performance of the best network.

The ROC curves and the classification rates of the tested
classifiers are shown in Fig. 2 and Table 5, respectively. The
Bayesian and MLP classifiers were found to have very similar
performance. The Bayesian classifier had a maximum CR of
89.79 percent, whereas the MLP classifier had a maximum CR of
89.49 percent. Both classifiers performed consistently better than

the Gaussian classifiers and the piecewise linear classifiers. Among
the four Gaussian classifiers, the unimodal Gaussian classifier of
both skin and nonskin (3DG pos/neg) had the best performance.
This result shows that classification performance is improved if
nonskin samples are also used in training the Gaussian models.
Furthermore, the 3D unimodal Gaussian of skin (3DG-pos) out-

performed its 2D counterpart (2DG-pos). The comparative perfor-
mances of 3D and 2D feature vectors will be further examined in
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TABLE 3
Skin Segmentation Data Sets for Training and Testing

TABLE 4
Tested Skin Color Pixel Classifiers



Section 3.3. We found that the 3D Gaussian mixture classifier

(3DGM) did not perform as well as the 3D unimodal Gaussian
classifier of skin and nonskin. However, we should reiterate that
the Gaussian mixture classifier was not trained with our training
set; its parameters were taken from [4].

The thresholds of the three piecewise linear classifiers were
fixed; hence, the corresponding ROC curves had only one point.
These classifiers have an advantage in that they are all simple and
fast. However, their performances were not as good as the
Bayesian classifier, the MLP classifier, or the 3D skin and nonskin
unimodal Gaussian classifier. The respective classification rates of

the CbCr fixed-range classifier, the HS fixed-range classifier, and
the GT plane-set classifier were 75.64 percent, 78.38 percent, and
82.00 percent.

In terms of memory usage, the Bayesian classifier using the

histogram technique required the largest amount of memory. For
example, each histogram in the Bayesian classifier used in this
experiment has about 16.8 million entries. In comparison, the
MLP classifiers that we trained have between nine and 15 neurons
and fewer than 40 connections. Therefore, the MLP classifier is a
good candidate if low memory usage is also a requirement. The
2D unimodal Gaussian of skin is characterized by 6 scalar

parameters, the 3D unimodal Gaussian of skin by 12 parameters,
and the 3D unimodal Gaussian model of skin and nonskin by
24 parameters. The Gaussian mixture model used in our test has
112 parameters. Finally, each of the two fixed-range classifiers
has two parameters, whereas the GT plane-set classifier has
24 parameters.

Fig. 3 shows sample outputs of the Bayesian classifier with the
histogram technique, the 3D unimodal Gaussian classifier with
both skin and nonskin pdfs and the multilayer perceptron. The
Bayesian and the MLP classifiers have almost similar segmentation

outputs; they both make fewer false detections compared to the
Gaussian classifier. The figure shows that Bayesian and MLP

classifiers can successfully identify exposed skin regions including
face, hands, and neck. However, objects in the background with
similar colors as the skin will invariably lead to false detections,
hence the need for postprocessing steps. Garcia and Tziritas [10]
proposed a region growing technique whereby adjacent and
similar skin-colored regions are merged; Fleck et al. [19]
considered only skin-colored pixels that have small texture
amplitude as skin pixels. However, a detailed treatment of
postprocessing techniques is beyond the scope of this paper.

3.3 Analysis of Color Representations

We used the Bayesian classifier with the histogram technique to
analyze different color representations. There are several reasons
for this decision. Most importantly, using the histogram technique
for pdf estimation, we do not need to make any assumption about
the form of skin and nonskin densities. In contrast, if a particular
form of the class-conditional pdf is assumed, as with the Gaussian
density models, some color spaces may be favored over others.
Furthermore, in this particular problem the feature vector has a
low dimension and a large data set is available. Therefore, it is
feasible to use the histogram technique for pdf estimation. Lastly,
the Bayesian classifier with the histogram technique can be
constructed very rapidly, even with a large training set, compared
to other classifiers such as the MLP.

We analyzed a total of eight different feature vectors: RGB, HSV,
YCbCr, CIE-Lab, normalized rg, HS, CbCr, and ab. The first four
vectors consist of all color channels; the other four vectors consist of
only chrominance channels. The analysis was carried out in seven
different dyadic histogram sizes: 4, 8, 16, 32, 64, 128, and 256.

The ROC curves of the 8 feature vectors, with histogram sizes of
256 bins and 64 bins per channel, are shown in Fig. 4; the
classification rates (CRs) at selected points on the ROC curves are
shown in Table 6. We observe that, at the histogram size of 256 bins
per channel, the classification performance was almost the same
for the four color spaces tested, RGB, HSV, YCbCr, and CIE-Lab.
This observation also holds for histogram sizes of 128 and 64 bins
per channel. Therefore, we conclude that skin color pixel
classification can be done in any of these color spaces. The most
appropriate color space to use should depend on the input image
format and the need of subsequent image processing steps. This
result is expected because theoretically the overlap between skin
and nonskin colors should not be affected by any one-to-one color
space transformation. It is likely that the performance difference
between color spaces is an effect of color quantization (i.e.,
histogram size). At high histogram sizes, the difference is very
minor. Our conclusion agrees with that of Shin et al. [7], who
measured the skin and nonskin separability in different color
spaces using metrics derived from the class scatter matrices and
histograms.

Results in Fig. 4 and Table 6 show that feature vectors
comprising all channels (i.e., RGB, HSV, YCbCr, and CIE-Lab)
outperformed feature vectors containing only chrominance
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Fig. 2. ROC curves of skin color pixel classifiers.

TABLE 5
Classification Rates (CRs) of Skin Color Pixel Classifiers



channels (i.e., normalized rg, HS, CbCr, and ab). Computed over
the four 3D feature vectors, the maximum CR had a mean of
89.61 percent and a standard deviation (std) of 0.22 percent;
computed over the four 2D feature vectors, the maximum CR had
a mean of 85.45 percent and a std of 0.97 percent. It has been
previously suggested that skin detection can be made more robust
to the lighting intensity if pixel luminance is not used in
classification. However, such robustness to lighting intensity is
essentially the result of expanding the skin color decision
boundary to cover the entire luminance channel. As our results
show, such an expansion leads to more false detection of skin
colors and reduces the effectiveness of skin segmentation as an
attention-focus step in object detection tasks. Using lighting
compensation techniques such as the one proposed by Hsu et
al. [1] is probably a better approach to coping with extreme or
biased lightings in skin detection.

The differences in the classification rates among the four
chrominance feature vectors were more noticeable than the

differences among the four 3-channel feature vectors. This is
expected because the overlap between skin and nonskin alters

when colors are projected from a 3D space to a 2D chrominance
plane. The CbCr performed better compared to the other three
chrominance feature vectors; this observation holds for histogram
sizes of 256, 128, and 64 bins.

3.4 Analysis of Color Quantization

The Bayesian classifier with the histogram technique was again
used to study the effects of color quantization on skin segmenta-
tion. In fact, for the Bayesian classifier, the level of color
quantization is reflected in the histogram size used for pdf
estimation. Clearly, a higher histogram size leads to finer pdf
estimation but requires greater memory storage. Therefore, it is
necessary to find a suitable level of color quantization in terms of
segmentation accuracy and memory usage.

The ROC curves for the eight feature vectors across six
histogram sizes are shown in Fig. 5. For all feature vectors, the

152 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 27, NO. 1, JANUARY 2005

Fig. 3. Sample results of skin segmentation using color pixel classification. The classifier thresholds are chosen at the ROC curve point where FDR = 15 percent. (a) Input

images. (b) Bayesian classifier with the histogram technique (64 bins per channel). (c) 3D unimodal Gaussian classifier (both skin and nonskin pdfs). (d) Multilayer

perceptron.



best performance was found at the histogram size of 256 bins per

channel. In general, larger histograms resulted in better ROC

curves. However, the differences in classification rates for

histogram sizes of 256, 128, and 64 bins per channel were quite

small. This finding has a practical significance because for a

3D feature vector, reducing histogram size by half means reducing

the memory storage by eight fold. The classification rates

decreased sharply as the histogram size dropped below 32;

chrominance feature vectors were the worst affected. Compared

to other color spaces, the RGB and HSV color spaces were more

robust to changes in the histogram size.
Our finding that larger histogram sizes tend to perform better is

different from that of Jones and Rehg [4], who found that the

histogram size of 32 bins per channel gave the best performance.

We suspect that this could be caused by the difference in the

training data used in our work and in Jones and Rehg’s work.

Intuitively, we know that if training samples are not sufficient, a

larger histogram size will result in a noisier pdf estimate and a

worse performance compared to a smaller histogram size.

However, if training samples are sufficient, a larger histogram

size will lead to a finer pdf estimate and hence better performance.

To verify this hypothesis, we constructed 14 different Bayesian

classifiers with histogram sizes of 256 and 32 bins per channel,

using seven reduced training sets. The reduced training sets

consisted of 1
2,

1
4,

1
8,

1
16,

1
32,

1
64, and

1
128 of the original training set,

obtained through random subsampling. The classifiers were run

on the test set in Table 3. We found that the 256-bin histogram size

was more sensitive to the size of the training data compared to the

32-bin histogram size (see Fig. 6). Compared to the 32-bin

histogram size, the 256-bin histogram size performed better for

large training sets (containing more than 1
8 of the original training

set), and worse for small training sets (containing less than 1
32 of the

original training set).

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 27, NO. 1, JANUARY 2005 153

Fig. 4. ROC curves for different color representations. (a) 256 bins per channel.

(b) 64 bins per channel.

Fig. 5. ROC curves for different histogram sizes. (a) RGB. (b) HSV. (c) YCbCr. (d) CIE-Lab. (e) Normalized rg. (f) HS. (g) CbCr. (h) ab.

TABLE 6
Classification Rates (CRs) of Eight Color Representations (Histogram Size = 256 Bins per Channel)



4 CONCLUSIONS

An analysis of the pixelwise skin segmentation approach that uses

color pixel classification is presented. The Bayesian classifier with

the histogram technique and the multilayer perceptron classifier

are found to have higher classification rates compared to other

tested classifiers, including piecewise linear and Gaussian classi-

fiers. The Bayesian classifier with the histogram technique is

feasible for the skin color pixel classification problem because the

feature vector has a low dimension and a large training set can be

collected. However, the Bayesian classifier requires significantly

more memory compared to the MLP and other classifiers. In terms

of color representation, our study based on the Bayesian classifier

shows that pixelwise skin segmentation is largely unaffected by

the choice of color space. However, segmentation performance

degrades if only chrominance channels are used and there are

significant performance variations between different choices of

chrominance. In terms of color quantization, we find that finer

color quantization (a larger histogram size) gives better segmenta-

tion results. However, color pdf estimation can be done using

histogram sizes as low as 64 bins per channel, provided that a large

and representative training data set is used.
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Fig. 6. ROC curves for different sizes of the training set.


