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We propose a new hierarchical architecture for visual pattern classification. The new architecture con-
sists of a set of fixed, directional filters and a set of adaptive filters arranged in a cascade structure. The
fixed filters are used to extract primitive features such as orientations and edges that are present in a
wide range of objects, whereas the adaptive filters can be trained to find complex features that are specific
to a given object. Both types of filter are based on the biological mechanism of shunting inhibition. The
proposed architecture is applied to two problems: pedestrian detection and car detection. Evaluation
results on benchmark data sets demonstrate that the proposed architecture outperforms several existing
ones. © 2010 Optical Society of America
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1. Introduction

Given the superiority of biological systems in per-
forming cognitive tasks, learning from nature has be-
come a major theme in computer vision and pattern
recognition research. In fact, many computational
models for visual pattern recognition are motivated
by our understanding of the visual systems in insects
and mammals. Fukushima [1] developed a hierarch-
ical neural network called neocognitron that is in-
spired by the discovery of simple and complex cells
in a cat’s visual cortex [2]. LeCun and colleagues [3]
proposed convolutional neural networks for 2-D pat-
tern recognition, which are based on the concept of
local receptive fields in biology. Local receptive fields
are also adopted in the pyramidal neural archi-
tecture proposed in [4]. Riesenhuber and Poggio [5]
created the HMAX model for object recognition con-

sisting of units similar to the view-tuned cells found
in macaque inferotemporal cortex.

It has been shown that neurons exist in the human
temporal lobe that respond best to faces, houses, or
specific objects in the environment [6]. However, the
striate cortex consists of many neurons that are spe-
cialized in sensing simple stimuli such as corners,
bars of a particular orientation or length, or bars that
move in a particular direction [7]. We propose a hier-
archical architecture for classification of visual pat-
terns. The proposed architecture consists of a set of
fixed, directional filters and a set of adaptive filters
arranged in a cascade structure. The fixed filters are
used to extract primitive features such as line orien-
tations and edges that are present in a wide range of
objects. The adaptive filters, on the other hand, are
trained to find complex features that are specific to a
given object. Both types of filter are based on the bio-
logical mechanism of shunting inhibition [8].

In Section 2 we present the proposed architecture,
its major stages, and a training method for solving a
given visual recognition task. In Sections 3 and 4 we
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describe applications of the proposed architecture
in detecting pedestrians and cars from images, re-
spectively, including the performance of the proposed
architecture in comparison with those of existing
detectors on benchmark data sets. We provide our
concluding remarks in Section 5.

2. Proposed Architecture

The proposed hierarchical structure consists of
three processing stages as shown in Fig. 1. The first
and second stages comprise nonlinear filters that are
used to extract hierarchical visual features, whereas
the third stage is used for classification. For a given
input image, the first stage calculates elementary
features at several orientations using fixed (non-
trainable) filters. In contrast, the filters in the second
stage have adaptive kernels that are optimized by
training to extract more specific, salient features for
a given problem. These features are then processed
by a classifier in the third stage to detect or recognize
a visual object of interest. Here we describe in detail
each stage and then present a learning algorithm to
train the adaptive filters and the classifier.

A. Stage 1: Directional Filters

The first stage is designed to extract features at differ-
ent orientations and consists of a set of nonlinear
filters that are based on a biological mechanism kn-
own as shunting inhibition. This mechanism, found
in the cortical cells of the human visual system [8],
has been adopted to improve image contrast [9]. Here
weapply theshunting inhibitionmechanismtodesign
directional nonlinear filters whose output response is
given by

Z1;i ¼
Di � I
G � I ; ð1Þ

where I is a 2-D input pattern, Z1;i is the output of
the ith filter, Di and G are the filter coefficients, and
* denotes 2-D convolution. Subscripts 1 and 2 in Z1;i
and Z2;i indicate the output of the first and
second processing steps in the proposed architecture,
respectively.
To reduce noise in the input image, kernel G is

chosen as an isotropic Gaussian, which is a low-pass

filter:

Gðx; yÞ ¼ 1

2πσ2 exp
�
−
x2 þ y2

2σ2
�
: ð2Þ

The kernel Di is formulated as a directional de-
rivative Gaussian to detect image features at a par-
ticular orientation. For a given angle θi, the kernel is
defined as

Diðx; yÞ ¼ cosðθiÞG0
xðx; yÞ þ sinðθiÞG0

yðx; yÞ; ð3Þ

where

G0
xðx; yÞ ¼ ∂Gðx; yÞ=∂x ¼ −x

2πσ4 exp
�
−
x2 þ y2

2σ2
�
; ð4Þ

G0
yðx; yÞ ¼ ∂Gðx; yÞ=∂y ¼ −y

2πσ4 exp
�
−
x2 þ y2

2σ2
�
: ð5Þ

The number of filters, N1, for Stage 1 is chosen ac-
cording to the complexity of the given problem. Each
filter is associated with an angle θi, where

θi ¼
ði − 1Þπ
N1

for i ¼ 1; 2; :::;N1. Robust image classification
requires visual features that are tolerant to small
translations or geometric distortions in the input im-
age. To achieve this, we perform a subsampling
operation on the filter outputs to reduce their spa-
tial resolution by half. This operation, illustrated in
Fig. 2(a), decomposes each filter output Z1;i into four
smaller maps:

Z1;i → fZ2;4i−3;Z2;4i−2;Z2;4i−1;Z2;4ig;
i ¼ 1; 2;…;N1: ð6Þ

The first map Z2;4i−3 is formed from the odd rows and
odd columns in Z1;i; the second map, Z2;4i−2, is formed
from the odd rows and even columns, and so on. Note
that, in some applications where the input image size
is small, the subsampling operation can be skipped
and we simply have Z2;i ¼ Z1;i.

Fig. 1. Overview of the proposed hierarchical structure.
Fig. 2. Subsampling operations performed in (a) Stage 1 and
(b) Stage 2.
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The next processing step is motivated by the
center-surround receptive fields that are found in
the lateral geniculate nucleus (LGN) of the thalamus
in the brain. There are two major configurations: on-
center and off-center. Accordingly, we separate each
subsampled map Z2;i, where i ¼ 1; 2;…; 4N1, into an
on-response map and an off-response map using zero
as the threshold:

Z2;i →

�
on-response map∶Z3;2i−1 ¼ maxðZ2;i; 0Þ
off-response map∶Z3;2i ¼ −minðZ2;i; 0Þ :

ð7Þ
Essentially, for the on-response map, all the negative
entries are set to 0, whereas for the off-response map,
positive entries are set to 0 and the entire map is
then negated. At the end of Stage 1, the features
in each map are contrast-normalized, using the fol-
lowing transformation:

Z4;i ¼
Z3;i

Z3;i þ μi
: ð8Þ

where μi is the mean value of map μi ¼ EðZ3;iÞ.
B. Stage 2: Adaptive Filters

Whereas Stage 1 is designed to extract fixed, elemen-
tary features, Stage 2 aims to detect more specific
features that will simplify the classification task. The
output maps produced by each directional filter in
Stage 1 are processed by exactly two filters in Stage
2: one filter for the on-response and the other filter
for the off-response. Hence, the number of filters,
N2, in Stage 2 is twice the number of filters in
Stage 1: N2 ¼ 2N1.
The filters in Stage 2 are also based on the shunt-

ing inhibition mechanism. Consider an input
map Z4;i to Stage 2. Suppose that Pk and Qk are
two adaptive kernels for the filter that corresponds
to this input map. The filter output is calculated
as

Z5;i ¼
gðPk � Z4;i þ bkÞ þ ck
ak þ f ðQk � Z4;i þ dkÞ

; ð9Þ

where ak, bk, ck, and dk are adjustable bias terms,
and f and g are two activation functions. To avoid
dividing by zero, the bias term ak is constrained as
follows:

ak ≥ ε − inf ðf Þ; ð10Þ

where inf ðf Þ denotes the lower bound of activation
function f and ε is a small positive constant. To form
a feature vector, a subsampling operation is per-
formed across each set of four output maps. From
four output maps, each nonoverlapping block of size
ð2 × 2pixelsÞ × ð4mapsÞ is averaged into a single out-

put signal, as shown in Fig. 2(b):

fZ5;4i−3;Z5;4i−2;Z5;4i−1;Z5;4ig → Z6;i: ð11Þ

C. Stage 3: Classification

The features produced by Stage 2 are sent to the
classification stage. Stage 3 can consist of any classi-
fier; however, we use a simple linear classifier whose
output y is given as

y ¼
XN3

i¼1

wiZ6;i þ b; ð12Þ

where the wi are adjustable weights, b is an adjust-
able bias term, the Z6;i are input features to Stage 3,
and N3 is the number of features. Output y indicates
the class or the label of input pattern I. The param-
eters of this classifier will be determined through a
supervised learning process.

D. Training Method

To train the adaptive filters in Stage 2 and the clas-
sifier in Stage 3, we propose a fast algorithm that
combines two gradient-based methods and the least-
squares method. Consider a training set of K input
patterns fI1; I2;…; IKg and K corresponding desired
outputs fd1;d2;…;dKg. The training steps can be
described as follows.

Step 1: Initialize trainable parameters of non-
linear filters in Stage 2 with random values from a
uniform distribution in the range ½−1; 1�.

Step 2: Perform forward computation to find the
outputs of each stage in response to the input
patterns.

Step 3: Apply the least-squares method to deter-
mine the weights and bias of the linear classifier.
Let Z6 be the inputs to the linear classifier for the
given training set, where an extra column of 1’s is
added to Z6. Let w be a vector of all free parameters
of the classifier w ¼ ½w1;w2;…;wN3

; b�T. Let d be the
vector of the desired outputs d ¼ ½d1;d2;…;dK �T. The
parameters of the linear classifier are found by sol-
ving the following optimization problem:

minimizeEðwÞ ¼ jjZ6w − djj2: ð13Þ

A general solution to Eq. (13) is given by

w ¼ ðZT
6Z6Þ−1Z6d: ð14Þ

Step 4: Compute the error given in Eq. (13) be-
tween the actual outputs of the linear classifier
and the desired outputs. Apply backpropagation to
compute the error gradient gðvÞ for all the trainable
parameters v in Stage 2. At training epoch t, update
each trainable parameter v of the nonlinear filters as
follows:
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vðtþ 1Þ ¼ vðtÞ þΔvðtÞ þ μðtÞΔvðt − 1Þ: ð15Þ

The weight update ΔvðtÞ is computed based on the
sign of the error gradient, similar to the Rprop meth-
od [10]:

ΔvðtÞ ¼ −sign½gðt; vÞ�γðtÞ; ð16Þ

where

γðtÞ ¼
8<
:
maxð0:5γðt−1Þ;10−10Þ; if gðt;vÞgðt−1;vÞ< 0
minð1:2γðt−1Þ;10Þ; if gðt;vÞgðt−1;vÞ> 0
γðt−1Þ; if gðt;vÞgðt−1;vÞ ¼ 0

:

ð17Þ

For a given trainable coefficient v, if the gradient
gðt; vÞ changes sign, the step size γðtÞ is reduced by
half. If the gradient keeps the same sign, the step
size γðtÞ is increased by a factor of 1.2. To prevent
divergence, the step size is bounded between
½10−10; 10�. The last term in Eq. (15) is themomentum
term μðtÞ, which is computed using the Quick-prop
method [11]:

μðtÞ ¼
���� gðt; vÞ
gðt − 1; vÞ − gðt; vÞ

����: ð18Þ

3. Pedestrian Detection

Here we present experimental results and perfor-
mance analysis of the proposed architecture for
pedestrian detection task. Pedestrian detection aims
to determine the presence and the location of people
or pedestrians in images and video. It is a vision task
that has important applications in video surveillance
[12], road safety, autonomous driving [13], and many
other areas [14]. Pedestrian detection is a difficult
task because pedestrian patterns can change drasti-
cally, for example, by some change in clothing or the
walking, standing, or running pose of the person.
Furthermore, many practical applications of pedes-
trian detection are in outdoor environments where
the lighting conditions vary greatly.

To support studies in pedestrian detection, the
Daimler–Chrysler research center has released a
benchmark database [15]. Examples of pedestrian
and nonpedestrian images from this database are
shown in Fig. 3. The database contains three training
sets (labeled 1, 2, 3) and two test sets (labeled T1
and T2). Each set has 4800 segmented pedestrian
images and 5000 nonpedestrian images; the image
size is 36 × 18 pixels.

A. Design of the Pedestrian Classifier

A classifier based on the proposed architecture is
designed to differentiate pedestrian from nonpedes-
trian patterns. Stage 1 has nine directional filters
with a standard deviation of σ ¼ 1:2 and a kernel size
of 7 × 7 pixels. Stage 2 has 18 filters with a kernel size
of 5 × 5 pixels. The activation functions f and g for
Stage 2 are chosen as hyperbolic tangent and expo-
nential functions, respectively. In this application, be-
cause the input image size is quite small (36 × 18
pixels), subsampling is performed only in Stage 2.
The proposed network is trained on a combination
of two training sets: f1; 2g, f1; 3g, or f2; 3g. After train-
ing, the network is evaluated on test sets T1 and T2.

In a previous study on automatic gender recogni-
tion from a single facial image [16], we found that
classification accuracy is improved by presenting
both the input pattern and its mirror image to the
classifier and using the average response to form a
classification decision. Here we evaluate both classi-
fication approaches: (i) adaptive hierarchical archi-
tecture with mirror image (or AHA with mirror)
and (ii) adaptive hierarchical architecture without
mirror image (or AHA without mirror).

B. Performance Evaluation and Comparison

Munder and Gavrila [15] analyzed several classifiers
for pedestrian detection using the Daimler–Chrysler
database. The classifiers include neural networks
[17], support vector machines (SVMs), and an ad-
aptive boosting (AdaBoost) classifier. They also eval-
uated different feature extractionmethods, including
principal component analysis (PCA), local receptive
fields (LRFs), and Haar wavelets. To compare

Fig. 3. Image patterns from the Daimler–Chrysler pedestrian detection database.
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with their results, we adopt the same evaluation
procedure.
Three classifiers are generated; each classifier is

trained with two training sets and the remaining
training set is used for validation. The three classi-
fiers are then evaluated on the two test sets T1 and
T2 to obtain six receiver operating characteristic
(ROC) curves. The six ROC curves are averaged
to produce a final curve that is used for classifier
comparison.
Figure 4 shows the ROC curves for the proposed

approaches (AHA with mirror, AHA without mirror)
and three best classifiers in the study byMunder and
Gavrila [15]. In Fig. 4 the false detection rate (FDR)
is the percentage of nonpedestrian patterns that are
misclassified, whereas the correct detection rate
(CDR) is the percentage of pedestrian patterns that
is correctly classified. The figure shows that, at the
same FDR, the AHA classifiers achieve higher CDRs
in comparison with the other three classifiers.
The classification rates for AHA with and without

a mirror are 91.9% and 90.8%, respectively. In com-
parison, the classification rates of the SVM classi-
fiers using PCA, Haar, and LRF features are 84.2%,
86.2%, and 89.8%, respectively. LRF features, which
are based on adaptive filters, outperform linear fea-
tures such as PCA and Haar wavelets. However, the
SVM classifier with the LRF features does not per-
form as well as the linear classifier with the features
that are extracted by our cascaded structure of non-
linear filters.

4. Car Detection

Car detection has many applications in traffic safety,
law enforcement, and industry. For example, it can be
employed to collect traffic data for road planning,
traffic management, marketing, or estimation of air
pollution. In recent years, car detection has attracted
significant research interest. Agarwal et al.[18] used
a SnoW (Sparse Network of Winnows) classifier and
sparse, part-based features obtained with the
Förstner interest operator. Fang and Qiu used a
SVM to detect cars and employed the maximal mu-
tual information transform to reduce the input

dimensions [19]. Zhu et al. proposed a two-stage
method for car detection [20]; the first stage uses
edge-area and corner-area templates to reduce the
number of noncar windows, and the second stage
uses Gabor filters to extract global structure and
local texture features. In these car detection ap-
proaches, feature extraction and classification stages
are designed separately. A drawback is that the ex-
tracted features can contain redundant information,
which leads to difficulty in training and decreases
the generalization ability of the entire system.

A. Car Detection Data Set and Performance Measures

A standard benchmark for car detection is the Uni-
versity of Illinois at Urbana–Champaign (UIUC) car
database [18]. This database has a training set
and two test sets. The training set consists of 550
segmented car images and 500 segmented noncar
images; each image is 40 × 100 pixels in size. Test
set 1 has 170 images containing 200 cars that have
nearly the same size as those in the training set. Test
set 2 has 108 images with 139 cars of different sizes.
The proposed car detector is evaluated on the UIUC
database, using the same criteria as in [18]. Given a
test set with nP positive patterns, after the detector
is applied on the test set, we record TP as the number
of true positives and FP as the number of false posi-
tives. Three performance measures recall (RC), pre-
cision (P), and F-measure (Fm) are then defined as

recall ¼ TP
nP

; ð19Þ

precision ¼ TP
TPþ FP

; ð20Þ

F −measure ¼ 2 × recall × precision
recallþ precision

: ð21Þ

A good classifier should have a high recall rate and
a high precision rate. The F-measure takes into
account both criteria: the higher the F-measure,
the better the classifier.

B. Designing the Car Detector

We train a car versus noncar classifier that accepts
an input pattern of 20 × 48 pixels and produces an
output of 1 for a car pattern and −1 for a noncar pat-
tern. Stage 1 has five directional filters and a kernel
size of 7 × 7 pixels. Stage 2 has ten adaptive non-
linear filters and a kernel size of 5 × 5 pixels. Sub-
sampling steps are applied in both Stages 1 and 2.
The activation functions f and g are hyperbolic

Fig. 4. (Color online) Performance comparison of different classi-
fiers on the Daimler–Chrysler pedestrian detection database. CR
denotes classification rate.

Table 1. Comparison of Thresholding Approaches on UIUC Test Set 1

Threshold TP FP RC (%) P (%) Fm (%) FP Rate (%)

Adaptive 200 19 100.0 91.3 95.5 0.0029
Fixed 199 81 99.5 71.1 82.9 0.0124
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tangent and exponential functions, respectively. To
increase the number of training images, a bootstrap-
ping method is employed [21].
To detect cars at any position and in any size,

we use a multiresolution processing scheme. A
given input image I of arbitrary size is iteratively
downsampled with a scale factor of s ¼ 1:1 to form
an image pyramid of fI0; I1; I2;…g. Each down-
sampled image Ik is scanned by the car versus noncar
classifier and a response map yk is produced. The re-
sponse ykðm;nÞ indicates how similar a fixed window
centered at pixel location ðm;nÞ is to a car pattern. A
response that exceeds a threshold is considered a car
pattern. The threshold is typically chosen to mini-
mize the error rate on a test set of fixed-size car and
noncar patterns. However, this approach does not
work well on real images because variations in imag-
ing equipment or image quality affect the choice of an
optimum threshold. Therefore, we propose a strategy
to determine the thresholds adaptively for each in-
put image.
In our approach, a cutoff value V0 is defined ini-

tially. At the top level of the image pyramid ðk ¼ 0Þ,
let S0 be the set of all responses in y0 that exceed V0:

S0 ¼ fy0ðm;nÞjy0ðm;nÞ > V0g: ð22Þ

The threshold T0 is defined as the average of all
responses in S0:

T0 ¼ 1
jS0j

X
∀si∈S0

si: ð23Þ

For other levels of the image pyramid ðk > 0Þ, letSk be
the set of all responses in y0; y1; :::; yk that exceed V0:

Sk ¼ Sk−1∪fykðm;nÞjykðm;nÞ > V0g: ð24Þ

The threshold Tk is defined as the average of all
responses in Sk:

Tk ¼ 1
jSkj

X
∀sj∈Sk

sj: ð25Þ

Because the classifier possesses some degree of invar-
iance to image translation and distortion, there will
be overlapping detections with the true car locations.
In our system, overlapping detections are merged

Table 2. Performance of the Proposed Car Detector on the UIUC Database for Different Initial Cutoff Values V0

Test Set 1 Test Set 2

V0 TP FP R (%) P (%) Fm (%) FP Rate (%) TP FP R (%) P (%) Fm (%) FP Rate (%)

−0:50 200 82 100.0 70.9 82.9 0.0125 137 86 98.6 61.4 75.7 0.0090
−0:40 200 54 100.0 78.7 88.1 0.0082 137 50 98.6 73.3 84.0 0.0052
−0:30 200 34 100.0 85.5 92.2 0.0052 138 29 99.3 82.6 90.2 0.0030
−0:20 200 19 100.0 91.3 95.5 0.0029 137 16 98.6 89.5 93.8 0.0017
−0:10 200 7 100.0 96.6 98.3 0.0011 137 8 98.6 94.5 96.5 0.0008
0 200 1 100.0 99.5 99.8 0.0002 137 6 98.6 95.8 97.2 0.0006
0.10 196 0 98.0 100 99.0 0 137 1 98.6 99.3 98.9 0.0001
0.20 189 0 94.5 100 97.2 0 131 1 94.2 99.2 96.7 0.0001
0.30 186 0 93.0 100 96.4 0 131 1 94.2 99.2 96.7 0.0001
0.40 182 0 91.0 100 95.3 0 126 1 90.6 99.2 94.7 0.0001
0.50 176 0 88.0 100 93.6 0 121 1 87.0 99.2 92.7 0.0001

Fig. 5. Car detector outputs for some images in the UIUC database. The detection score (sc) is also shown.
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using a grouping technique similar to the one pro-
posed in [22]. The detections are clustered according
to their proximity in the image space and the scale
spaces. For each cluster, the center of the represen-
tative car candidate is taken as the centroid of the
cluster. The confidence score of the candidate is the
average response of all detections in the cluster.

C. Fixed Threshold Versus Adaptive Thresholds

We compared two thresholding approaches using:
(i) a fixed threshold for all downsampled images
and (ii) an adaptive threshold for each downsampled
image. The fixed threshold was set to −0:2; the initial
cutoff value V0 for the adaptive threshold approach
was also set to −0:2. The performance measures on
the UIUC test set 1 are listed in Table 1. Use of
an adaptive threshold achieves a higher precision,
recall, and F-measure, in comparison with use of a
fixed threshold. We observed that, with a fixed thres-
hold, more background windows are detected as cars,
and some of them have higher responses than the
true car object. As a result, in postprocessing the true
detection is sometimes incorrectly discarded by the
grouping method.

D. Car Detector Performance

We evaluated the proposed car detector when the ini-
tial cutoff value V0 varies in the range ½−0:5; 0:5�. The
performance measures for test sets 1 and 2 are listed
in Table 2. As V0 increases, the recall rate decreases
and the precision rate increases. The F-measure in-
creases when the recall rate is close to the precision
rate. At the point at which the F-measure reaches
the maximum value, the proposed detector has a re-
call rate of 100% with test set 1 and 98.6% with test
set 2. Figure 5 shows the outputs of the proposed car
detector for images in the UIUC data set.

E. Comparison with Other Car Detectors

The proposed system was compared with other car
detectors in the same UIUC database. The same
comparison criterion as in the existing articles was
used: the recall rate at which the F-measure is at
maximum. Note that the recall rate is essentially
the correct detection rate; the F-measure indicates
the trade-off between correct detection rate and false
detection rate. The results in Table 3 indicate that,
for both test sets, the proposed system achieves high-

er recall rates in comparison with the other five car
detectors [18–20,23,24]. Note that the car detectors
in [19,20] use SVMs, whereas our car detector uses
a linear classifier, which means that the proposed
structure of nonlinear filters is capable of extracting
discriminative features that can be processed by a
simple classifier.

5. Conclusion

We have presented a new architecture for visual pat-
tern classification that is based on a combination of
fixed and trainable nonlinear filters. The fixed filters,
inspired by lateral geniculate and simple cortical
cells, are used to extract primitive features that are
common to most visual recognition tasks. The train-
able filters, inspired by the more sophisticated
neurons in the visual cortex, are tuned to extract fea-
tures specific to a type of visual object. Evaluation
results on benchmark tests in two vision tasks, de-
tecting pedestrians and cars, show clearly that the
proposed architecture outperforms existing detectors
in terms of accuracy. Separating fixed and trainable
filters enables us to integrate some prior knowledge
about salient features into the architecture and ac-
celerate training significantly. Among future direc-
tions, we plan to integrate feature selection into
the second stage and use a more powerful classifier
in the third stage.
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