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Abstract—The ground-penetrating radar (GPR) has been
widely used in many applications. However, the processing and
interpretation of the acquired signals remain challenging tasks
since an experienced user is required to manage the entire oper-
ation. In this paper, we present an automatic classification system
to assess railway-ballast conditions. It is based on the extraction
of magnitude spectra at salient frequencies and their classifica-
tion using support vector machines. The system is evaluated on
real-world railway GPR data. The experimental results show that
the proposed method efficiently represents the GPR signal using a
small number of coefficients and achieves a high classification rate
when distinguishing GPR signals reflected by ballasts of different
conditions.

Index Terms—Ground-penetrating radar (GPR) processing,
railway-ballast assessment, support vector machine (SVM).

I. INTRODUCTION

THE GROUND-PENETRATING radar (GPR), sometimes
called subsurface radar, ground probing radar, georadar,

or earth sounding radar, exploits electromagnetic fields to probe
lossy dielectric materials [1]–[4]. It can nondestructively detect
buried objects beneath the shallow earth surface (less than
50 m) or in a visually impenetrable structure, such as walls
and concrete floors. GPR has attracted considerable interest
in many areas, such as archaeology [5], road construction [6],
glacier and ice sheet investigation [7], and mineral exploration
and resource evaluation [8].

As a cost-effective and environment-friendly means of trans-
portation, railways play an important role in daily life. A rail-
way structure typically consists of steel rails, fastening system,
sleepers, ballast, subballast, and subgrade [9]. The transverse
section of a railway is shown in Fig. 1. The ballast is an
essential component for proper railway functioning. To ensure
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Fig. 1. Railway structure [9], [11].

safety, regular inspection of rail tracks must be conducted.
Traditionally, track investigation involves drilling to collect
ballast samples from the railway sites. The ballast samples are
then sent to a laboratory for assessment, which involves fouling
index measurement. Finally, maintenance actions are deter-
mined based on the evaluation results. The entire procedure
is labor intensive and time consuming. Thus, the rail industry
is searching for new and more cost-effective approaches. As a
nondestructive detection tool, GPR has attracted great interest
in railway-ballast evaluation in recent years [10].

Despite its commercial success, GPR still faces various fun-
damental problems. Specifically, processing and interpreting
radar profiles are still challenging tasks [12], [13]. In addition
to traditional GPR processing techniques, such as dewow and
filtering, researchers have employed various signal processing
techniques to aid the GPR signal analysis and interpretation [2],
[13], [14]. For example, Al-Qadi et al. [9] proposed a time-
frequency approach to evaluate GPR data for railway-ballast as-
sessment. Their approach utilizes the short-time Fourier trans-
form (STFT). Sinha et al. [15] presented a new method for time-
frequency map computation for nonstationary signals. Their
approach utilizes the continuous wavelet transform (CWT).
Experiments on seismic data show that the CWT approach can
be used to detect frequency shadows and subtle stratigraphic
features. Fujimoto and Nonami [16] suggested a mine detection
algorithm based on statistical features, such as Student’s t
distribution and chi-square distribution. Their algorithm was
shown to improve the probability of detection and decrease the
probability of false alarm. Zoubir et al. [14] compared a number
of landmine detection techniques, such as Kalman filtering,
background subtraction, matched filter deconvolution, wavelet
packet decomposition, and trimmed average power. They eval-
uated the techniques using receiver operating characteristic
curves and computation time. The Kalman filtering approach
was found to outperform other methods on detection rate, but it
has the highest computational cost. The aforementioned studies

0196-2892/$26.00 © 2011 IEEE



3962 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 49, NO. 10, OCTOBER 2011

Fig. 2. GPR system components and GPR work process [12].

mainly focus on improving visualization and clarity of GPR
signals, and human intervention is still required to interpret the
processed signals, which may introduce subjectivity and user
dependence into data analysis.

In a GPR survey, because particular resonance frequencies
arise in wave propagation, reflected waves from different buried
objects or paths present different electromagnetic character-
istics. Hence, it is possible to classify the buried objects or
underground materials by analyzing the frequency spectra of
the received GPR signals. Motivated by this observation, we
propose a GPR signal classification system based on magnitude
spectrum and support vector machines (SVMs) for ballast
fouling assessment. The proposed system is designed so that
no human intervention is required. It can automatically extract
and select features from GPR railway signals and classify the
GPR traces.

The remainder of this paper is organized as follows. In
Section II, the proposed classification system is introduced. In
Section III, the experimental methods and system implemen-
tation are explained. The experimental results are presented in
Section IV, followed by some concluding remarks in Section V.

II. PROPOSED APPROACH

In this section, we first give an overview of the GPR system
and then present the proposed approach for ballast fouling
classification.

A. GPR System Overview

Fig. 2 shows the components of a typical GPR system. It
consists of a signal generator (transmitter), transmitting and
receiving antennas, and a recording device (receiver) [12],
[17]. To detect objects, the transmitter generates a pulse and

Fig. 3. Three traces from the railway data set. From top to bottom, they
are from 50% clay ballast, clean ballast, and 50% coal ballast, respectively.
(a) Time-domain waveforms. (b) Frequency magnitude spectra.

delivers it to the transmitting antenna Tx, which radiates an
electromagnetic wave. Once the electromagnetic wave hits an
object whose electrical properties are different from those of
surrounding materials, part of the wave energy is reflected back
toward the receiving antenna Rx. The detected energy is then
sent to the receiver for storage and display.

Since the GPR device can be mounted on a train, it is possible
to conduct a continuous survey without interruption. With GPS
devices and signal processing techniques, maintenance deci-
sions can be made on site. A challenging task is how to interpret
the GPR signals and assess the ballast condition automatically.

B. GPR Trace Classification System

Because the frequency spectrum of the GPR return reveals
the characteristics of the materials on the electromagnetic
wave path, we propose to use frequency features to auto-
matically categorize ballast fouling conditions. Three traces
from different fouling ballasts are shown in Fig. 3, including
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Fig. 4. Block diagram of the proposed automatic classification system.

their time-domain waveforms [Fig. 3(a)] and magnitude spec-
tra [Fig. 3(b)]. It is observed that the traces from ballast of
different fouling conditions have different magnitude spectra.
For example, the peak in the magnitude spectrum of the 50%
clay is lower than the other two. In the frequency range of
800–1200 MHz, the magnitude spectrum of the 50% coal
decays more rapidly than that of the clean ballast.

The proposed automatic classification system includes three
main stages: preprocessing, feature extraction, and classifica-
tion. The system block diagram is shown in Fig. 4. When
a GPR signal is received, salient features are extracted from
it automatically and then sent to a pretrained classifier for
assessment of the railway-ballast condition.

C. Preprocessing and Feature Extraction

The preprocessing stage employs basic signal processing
techniques, including dc component removal, resampling, and
time shifting, to reduce the intrinsic interferences introduced by
the GPR and ensure the sampling rate consistency of the time-
domain signals; depending on the system, samples located at
the end of each trace may be discarded at this stage.

In the proposed system, feature extraction consists of three
steps. First, the discrete Fourier transform (DFT) is applied
to GPR signals to obtain the magnitude spectra, which are
normalized to ensure consistency in magnitude spectrum am-
plitudes. Second, salient frequencies are determined based on
the training data and user-defined parameters. Third, feature
vectors are formed by extracting magnitudes of local maxima
and arranging them in ascending order of frequencies.

In the first step, the DFT is applied to the time-domain
trace. Let s[n] be the discrete-time signal (real or complex) of
length L obtained by sampling a continuous-time signal s(t)
with a uniform sampling rate fs. The N -point DFT of s[n] is
defined as

S[k] =

N−1∑
n=0

s[n]e−j2π k
N n, k = 0, 1, 2, . . . , N − 1 (1)

where N ≥ L. Note that the analog frequency corresponding to
the kth DFT index f(k) is given by

f(k) =
k

N
fs, k = 0, 1, 2, . . . , N − 1. (2)

In the second step, the salient frequencies are determined. To
reduce the dependence on the antenna gain, the magnitude
spectrum is normalized as follows:

Pk =
|S[k]|

N−1∑
k=0

|S[k]| /N
(3)

where S[k] is the DFT coefficient computed in (1). Fig. 5
shows the normalized magnitude spectra of traces obtained

Fig. 5. Normalized magnitude spectra of three different traces obtained with
800-MHz antenna.

with an antenna frequency of 800 MHz. From this figure, it
can be observed that the significant frequency components are
below 2200 MHz, which is approximately three times the GPR
antenna frequency. Similar observations can be made from the
magnitude spectra of other GPR signals. The major frequency
components of each trace reside mostly in the range [0, 3fa],
where fa is the antenna frequency. Therefore, the salient fea-
tures of each trace can be extracted from this frequency range.

There are many frequencies that can be used in the range
[0, 3fa]. We choose the local maximum points within the
specific frequency range as the salient frequencies. In our
algorithm, the local maxima are located via the morphological
operation dilation. Dilation is used because of its flexibility for
local maxima search. Suppose that y is a 1-D discrete time
signal and l is a flat structuring element, the dilation of y
by l, denoted by y ⊕ l, is defined as

[y ⊕ l](x) = max
x′∈Dl

{y(x− x′)} (4)

where Dl is the domain of l and the structuring element is cen-
tered on x. Consequently, there are two adjustable parameters
that determine the number of salient frequencies or the feature
vector size: 1) the frequency distance between two adjacent
local maxima and 2) the number of instances used to extract
salient frequencies.

In the third step, the spectrum amplitudes at the selected
frequencies are retrieved and arranged in ascending order of
frequencies to form a feature vector. In preliminary experi-
ments, another frequency range [0, 2fa] was considered for
feature extraction; however, using the same parameters, the
classification rate was reduced for the frequency range [0, 2fa]
compared with the frequency range [0, 3fa]. Thus, 3fa was
chosen as the frequency boundary. On average, about half of
the extracted features are found in the range [2fa, 3fa].

D. Classification Using SVMs

There are many methods available for pattern classifica-
tion, such as discriminant analysis [18], decision trees [19],
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k-nearest neighbors (k-NN) [18], Bayesian classifier [20], neu-
ral networks [21], and SVMs [22]. Here, we choose SVMs as
the classification tool because they have been found to perform
well in various practical applications [23]–[25]. SVMs are
originally formulated for two-class classification problems. In
SVMs, the decision boundary is obtained from the training data
by finding a separating hyperplane that maximizes the margins
between the two classes. This learning strategy is shown to
increase the generalization capability of the classifier. We can
apply SVMs to complex nonlinear problems by projecting the
data onto a high-dimensional space using kernel methods.

Consider M training samples

{(x1, y1), (x2, y2), . . . , (xM , yM )}

where xi ∈ Rn is a feature vector and yi ∈ {1,−1} is the class
label. If the classes are linearly separable in the input space, the
decision function can be written as

{
〈w,xi〉+ b ≥ 1, for yi = 1
〈w,xi〉+ b ≤ 1, for yi = −1

(5)

or

yi (〈w,xi〉+ b) ≥ 1 (6)

where w is the vector normal to the hyperplane, b is a bias term,
and 〈w,x〉 is the dot product of the vectors w and x.

There are many hyperplanes that can separate the data
[Fig. 6(a)]. However, only one hyperplane, called optimal sep-
arating hyperplane, can achieve maximum margin [represented
with the solid line in Fig. 6(b)]. The margin perpendicular to
the hyperplane can be expressed as 2/‖w‖. Consequently, the
problem is to find w and b that maximize the margin. This is
equivalent to minimizing

J(w) =
1

2
‖w‖2 (7)

subject to

yi (〈w,x〉+ b) ≥ 1, i = 1, . . . ,M. (8)

If the classes are not separable, it is necessary to introduce
nonnegative slack variables ξi into constraint (8)

yi (〈w,x〉+ b) ≥ 1− ξi. (9)

A classifier that generalizes well can be found by minimizing

τ(w, ξ) =
1

2
‖w‖2 + C

M∑
i=1

ξi (10)

subject to

yi (〈w,x〉+ b) ≥ 1− ξi, i = 1, . . . ,M (11)

where C is a constant representing the tradeoff between
margin maximization and training error minimization. This
is a constrained optimization problem. By introducing

Fig. 6. SVM optimal hyperplane for a two-class problem. (a) Data can
be separated by many hyperplanes. (b) Only one hyperplane achieves the
maximum separation.

nonnegative Lagrange multipliers αi and βi, the problem can be
expressed as

min
w,b

max
α,β

L(w, b, ξ,α,β) =
1

2
‖w‖2 + C

M∑
i=1

ξi

−
M∑
i=1

αi [yi (〈w,xi〉+b)−1+ξi]

−
M∑
i=1

βiξi. (12)

The optimal solution should satisfy the following
Karush–Kuhn–Tucker conditions [23], [26]

∂

∂w
L(w, b, ξ,α,β) = 0 (13)

∂

∂b
L(w, b, ξ,α,β) = 0 (14)

∂

∂ξ
L(w, b, ξ,α,β) = 0 (15)

αi [yi (〈w . . .xi〉+ b)− 1 + ξi] = 0, i = 1, . . . ,M (16)

βiξi =0, i = 1, . . . ,M (17)

αi ≥ 0, βi ≥ 0, ξi ≥ 0, i = 1, . . . ,M. (18)
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Fig. 7. By mapping data from the input space to a higher dimensional space
via Φ, it is possible to find a nonlinear decision boundary in the original input
space.

Equations (13)–(18) lead to

w =

M∑
i=1

αiyixi (19)

M∑
i=1

αiyi =0 (20)

αi + βi =C. (21)

Substituting (19)–(21) into (12), the primal variables w and b
can be eliminated and a dual optimization problem is obtained

maximizing Q(α)=

M∑
i=1

αi−
1

2

M∑
i,j=1

αiαjyiyj〈xi,xj〉 (22)

subject to

0≤αi≤C, i=1, . . . ,M (23)
M∑
i=1

αiyi = 0, i = 1, . . . ,M. (24)

In real-world applications, classes are usually not linearly
separable in the input space and the classifiers obtained in the
original input space may not have high generalization ability for
unknown data. Therefore, the data samples from the input space
are usually projected onto a higher dimensional dot product
space via a mapping function Φ. The linear decision boundary
constructed in the projected space yields a nonlinear decision
boundary in the input space (see Fig. 7).

However, the projection is usually computation intensive.
To simplify the projection, a positive semidefinite kernel H is
employed

H(x,x′) = 〈Φ(x),Φ(x′)〉 . (25)

Using the kernel, the dual problem in (22) is expressed as

maximizing Q(α) =
M∑
i=1

αi −
1

2

M∑
i,j=1

αiαjyiyjH(xi,xj)

(26)

subject to the constraints in (23) and (24).
Compared with several other kernels (linear and polynomial),

the radial basis function (RBF) kernel has been chosen because
it performs nonlinear mapping and has less hyperparameters
than the polynomial kernel; it is given by

H(x,x′) = e−γ‖x−x′‖2 (27)

Fig. 8. Experimental setup. (a) Existing railway track used for GPR data
collection. (b) GPR data collection system.

where γ is a positive scalar. In this paper, we focus on SVMs
with RBF kernels.

III. EXPERIMENTAL METHODS

The GPR operation along the railway can be affected by
many factors, such as cross winds due to high speed rail, high
electromagnetic interference, and radio frequency interference
from railway communications and automation, geomagnetic
storms, and thunderstorms [27]. To collect real-world data for
system evaluation, we conducted GPR surveys along an exist-
ing railway track at Wollongong station in New South Wales,
Australia. We have collected 25 920 GPR traces, of which 5 896
are with known ground truth. In this section, first we introduce
the railway track and experimental setup; then, we explain the
implementation of the proposed system.

A. Railway-Ballast Data Collection Using GPR

Fig. 8 shows the data collection equipment and the railway
track where the experiments were conducted. This track is
parallel to several tracks that are in service. Considering the
time and cost, three sections with known ground truth of the



3966 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 49, NO. 10, OCTOBER 2011

TABLE I
RADAR PARAMETER CONFIGURATIONS FOR 800-MHz

ANTENNA USED IN THE SURVEYS

railway track were chosen for the GPR data. Each section has a
length of 2.0 m and a depth of 0.55 m; the width is equivalent
to the existing ballast width. We excavated the long-standing
ballast from these sections and then filled them with different
types of ballast that were premixed. Each section contained
only one type of ballast. The sleepers were not reinstalled, and
the rails remained untouched.

The three ballast types are chosen based on the most common
ballast fouling conditions: 1) 50% clay fouling; 2) clean; and
3) 50% coal fouling. Here, the percentage of fouling is a relative
ballast fouling ratio; it represents the proportion of fouling
particles to ballast particles [28]. Compared with the traditional
fouling index and percentage void contamination, the relative
ballast fouling ratio can reveal the effect introduced by specific
gravity and gradation of fouling materials.

Before GPR surveys are conducted, a proper GPR system
must be chosen based on the survey environment, budget,
and GPR system availability. To obtain quality GPR profiles,
several factors were considered in choosing the appropriate
antenna system, such as the depth to the bottom of ballast,
resolution for ballast gravel grain size and fouling, operation
environment, and the antenna height to avoid trash, sensors,
and switches [27]. Preliminary experiments were conducted to
select the proper GPR antenna [29]. Different GPR systems
from different companies were evaluated. Based on the results,
the GPR system from MALÅ Geoscience was selected for
data acquisition. The preliminary results also showed that the
time–distance records from an 800-MHz antenna were clearer
than those from a 1.2-GHz antenna. Therefore, our surveys
mainly used the MALÅ 800-MHz antenna. The railway data
collection system is shown in Fig. 8(b), and the parameters of
the GPR used in the experiments are listed in Table I. Note that
the bandwidth is approximately equal to the center frequency
(antenna frequency).

The Wollongong railway data set consists of two parts: one
collected under dry ground condition and the other gathered
under wet condition.

1) The dry ground data samples were acquired during sunny
weather conditions; the materials filled in the three sec-
tions were also dry. Two antennas of center frequencies
800 MHz and 1.2 GHz from MALÅ Geoscience were
deployed, each at two different heights: 200 and 300 mm.
The antenna elevations can prevent collision of the GPR
with a variety of devices along the railway. Different GPR
configuration parameters, including antenna height, time
window, and sampling frequency, were utilized. Twenty-

TABLE II
NUMBERS OF AVAILABLE TRACES IN COMBINED 800-MHz DATA SET

four GPR profiles were collected with the antenna fre-
quency of 800 MHz and 12 profiles with 1.2 GHz. Each
profile contains the GPR signals for an entire section
(50% clay, clean, or 50% coal).

2) The wet ground data set was obtained under cloudy
weather conditions; heavy rains from the previous night
saturated the materials. Only the antenna of center fre-
quency 800 MHz was used. All radar profiles shared the
same GPR configuration parameters. The antenna height
was lifted to 400 mm to avoid obstacles along the railway
track.

A summary of the Wollongong railway data set using the
800-MHz antenna is presented in Table II. This data set,
namely, the combined 800 MHz data set, can be divided into
three subsets based on the antenna heights:

1) 200-mm data subset;
2) 300-mm data subset;
3) 400-mm data subset.

Each data subset consists of GPR traces from three different
types of ballast. To reduce the border effects, the first and last
15% traces of each GPR profile were discarded.

B. System Implementation

In the preprocessing phase, an automatic dc offset is applied
to each trace to obtain a zero-mean signal. Next, every GPR
trace is resampled to ensure data consistency. Then, each trace
is shifted according to the position of the global maximum
point. The shifting reduces the effects of antenna height vari-
ations; a few samples may be discarded from the end of each
trace, based on the minimum trace length after resampling.

For feature extraction, the fast Fourier transform algorithm
is applied to obtain the amplitude spectra. After normalization,
several traces are selected to find the feature points, i.e., the
salient frequencies in the range [0, 3fa]. The magnitude spec-
trum features are extracted at these points to form the feature
vector, which is fed to the classifier. Consider the three example
traces in Fig. 5, representing three different ballast types. Each
trace has a length of 308 in the discrete time domain. The
magnitude spectra of the tree traces and the salient frequencies
are shown in Fig. 9. In the figure, each vertical dotted line
indicates a frequency where a magnitude feature is extracted.
There are 17 feature points in this example; hence, each trace is
represented by a feature vector of size 17.

To train and test the SVM classifiers, the LIBSVM tool,
developed by Chang et al. [30], was used. When building
SVM classifiers, an exhaustive search for optimal SVM training
parameters is computation intensive. Thus, a hierarchical ap-
proach is applied in our system to reduce the computation cost.
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Fig. 9. Feature points of the three traces shown in Fig. 3(a). Each vertical
dotted line represents a feature point.

First, the parameter search is performed on a coarse grid. Once a
possible region containing the optimal parameters is identified,
a finer search is applied within the identified region. Compared
with the exhaustive search, the two-level hierarchy reduces the
training time by half. During training, the system sometimes
finds more than one set of optimal parameters. To solve this,
we simply construct a number of classifiers using the chosen
parameters and form them as an SVM pool [31]. Whenever
a test sample is input into the system, it will be evaluated by
every SVM classifier in the pool; a majority voting strategy is
then applied to obtain the overall classification result.

SVMs utilize explicit decision functions and are formulated
for two-class problems. It is necessary to extend the SVM
formulation to handle multiclass problems. There are several
ways to extend SVMs; one-versus-all and pairwise are two
common approaches. In this paper, we focus on the one-versus-
all approach and give results of the pairwise SVM approach
only for comparison purposes.

1) In the one-versus-all approach, a k-class problem is de-
composed into k two-class problems [23], [32]. Each
SVM is trained with all the training samples. For the
ith SVM, where i ≤ k, samples in the ith class are
labeled as positive, and samples in all other classes are
labeled as negative. Note that the classifier parameters
that yield high generalization are automatically selected
using fivefold cross-validation on the training set.

2) The pairwise approach requires k(k − 1)/2 two-class
SVM classifiers to solve a k-class problem. Each SVM
classifier is trained with samples from two classes. Let
cij be the SVM classifier that is trained on data from the
ith and jth classes. In the test phase, the SVM classifier
cij(i < j) divides all the data into class i and class j. The
final classification results of pairwise SVMs are obtained
by combining all two-class classifiers with a majority
voting scheme. For an input instance x, if a pairwise
SVM classifier categorizes x in the kth class, then the
vote for class k is increased by one. Once all classifiers

have voted, the pattern x is assigned to the class that has
the highest voting score.

To evaluate the generalization ability of the classifiers,
cross-validation is used. There are several methods of cross-
validation; in the proposed system, we employ fivefold cross-
validation. The entire data set is randomly divided into five
partitions of approximately equal sizes. Four partitions are used
to train, and the remaining partition is used to validate the
classifier. The step is repeated five times until all partitions
have been evaluated. Finally, the average classification rate
across five folds is computed and used to measure the system
performance.

IV. RESULTS AND ANALYSIS

The proposed system is used to classify ballast fouling
conditions. In Section IV-A, we present the experimental re-
sults using different numbers of salient frequencies with one-
versus-all SVMs trained and tested on the entire 800-MHz
data set. In Section IV-B, we present the experimental results
using the three data subsets. In Section IV-C, we show the
system performance on the 1.2-GHz data. In Section IV-E,
we compare the one-versus-all SVMs with pairwise SVMs
and discuss the advantages and disadvantages of these two
multiclass SVM approaches. Then, the system is compared with
the k-NN algorithm and the Mahalanobis distance classifier
using the proposed magnitude feature. A comparison is also
made between the proposed feature extraction method and the
STFT spectrogram.

A. Classification Performance on the Combined Data Set

In the first experiment, the proposed classification system
is trained and tested on the combined data subsets collected
with the 800-MHz antenna at different heights: 200, 300, and
400 mm. The proposed feature extraction approach searches for
local maximum points in the magnitude spectra; these points
determine the corresponding salient frequencies. Our experi-
ments show that it is not necessary to use all local maxima for
classification. Thus, in the following, we analyze how the num-
ber of salient frequency points affects the system performance.
Note that the number of frequency points is equivalent to the
feature vector size.

There are two parameters that control the number of promi-
nent frequencies: the distance between peaks and the number
of traces used. In system evaluation, these two factors are
both varied from 3 to 18. If there exist more than one pair
of parameters that bear the same number of salient frequen-
cies, the median classification rate is reported. The classifica-
tion rate is the percentage of test samples that are correctly
classified.

The classification performance on the combined
800-MHz data set using fivefold cross-validation is shown in
Table III. The proposed system can achieve a classification
rate of 99.5% with 7 salient frequencies and 99.7% with
14 frequencies.
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TABLE III
CLASSIFICATION RATES FOR DIFFERENT NUMBERS OF SALIENT FREQUENCIES ON THE COMBINED 800-MHz DATA SET

TABLE IV
CLASSIFICATION RATES FOR DIFFERENT NUMBERS OF SALIENT FREQUENCIES. DATA SET: fa = 800 MHz; h = 200 mm

TABLE V
CLASSIFICATION RATES FOR DIFFERENT NUMBERS OF SALIENT FREQUENCIES. DATA SET: fa = 800 MHz; h = 300 mm

TABLE VI
CLASSIFICATION RATES FOR DIFFERENT NUMBERS OF SALIENT FREQUENCIES. DATA SET: fa = 800 MHz; h = 400 mm

B. Classification Performance Versus Antenna Height

Further experiments have been conducted to explore the sys-
tem performance on the three data subsets of different antenna
heights. The three experiments using the 800-MHz data set are
as follows:

1) training and testing on the 200-mm data subset;
2) training and testing on the 300-mm data subset;
3) training and testing on the 400-mm data subset.

Since the salient frequency points are determined from
the training data, the feature vectors are different for each
experiment.

1) The system classification performance on the 200-mm
data subset as a function of the number of salient frequen-
cies is given in Table IV. The system performance im-
proves when more frequency points are used. When fewer
than five frequency points are used, the classification rate
is below 80.0%. When the number of frequency points
reaches five, the classification rate increases to 90.4%.
Once the feature size reaches 14, the system performance
remains stable with a classification rate above 99.0%.
Perfect classification is achieved with 17 frequencies or
higher.

2) Table V shows the classification rates when the system
is trained on the 300-mm data subset. The classification
rate improves steadily with increasing number of salient
frequencies. When the number of salient frequencies
reaches 12, the system is able to classify the test set with
a classification rate of 99.8%.

3) For 400-mm antenna height data, the system achieves an
overall classification rate of 99.7% with only eight salient
frequencies (see Table VI); the classification rate reaches
100.0% with ten features.

Fig. 10. Classification rates for different feature vector sizes and antenna
heights.

The classification rates for the three data subsets are com-
pared in Fig. 10. The experimental results show that the
system performance varies with different numbers of salient
frequencies; the classification rate tends to increase when more
frequency points are used. When fewer salient frequency points
are used, the system trained with 400-mm-antenna-height data
performs better than the ones trained with 200- and 300-mm
antenna height data. A possible explanation is that the 400-mm
data were collected under a water-saturated condition. The
higher dielectric permittivity of the water results in a stronger
reflection than the dry ballast. Although the distance between
peaks and the number of traces are both varied from 3 to 18
for each experiment, the system is able to detect more points in
the 400-mm data subset. For example, using the same range of
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TABLE VII
CLASSIFICATION RATES FOR DIFFERENT NUMBERS OF SALIENT FREQUENCIES. DATA SET: fa = 1.2 GHz; h = 200 mm

parameters, more frequency points are extracted from the
400-mm data subset than from the other two subsets: 25 freq-
uency points are extracted from the 200-mm data subset, 28
from the 300-mm subset, and 50 from the 400-mm subset. This
can also be explained by the stronger reflection of the 400-mm
data.

We also analyzed the system performance when it was
trained on data collected with one antenna height and tested
on data collected with another antenna height. The results
show that the classification rate decreases. However, the system
performed well when it was trained and tested on mixed data
of different antenna heights (see Table III). This shows that
the proposed system can operate at different antenna heights,
provided that the training data set is representative.

C. Analysis of Operating Antenna Frequency

As mentioned in Section III-A, the MALÅ 1.2-GHz antenna
was employed during the first survey. For comparison purposes,
the classification performance for this antenna is shown in
Table VII. When fewer than 16 frequency points are used, the
classification rate is below 90.0%. When the feature vector
size reaches 21, the classification rate reaches 95.7%. A clas-
sification rate of 99.0% requires a feature vector size of 30
or more. The results show that when a small number of fre-
quency points are used, the classification rate for the 1.2-GHz
data is lower than the classification rate for the 800-MHz data.
For example, the 1.2-GHz system requires 19 salient frequen-
cies to achieve a classification rate of 93.0%, whereas the
800-MHz 200-mm system needs only 6 salient frequencies to
obtain a similar classification rate (see Table IV). In GPR, low
antenna frequencies penetrate deeper than high frequencies,
while high frequencies provide finer resolution than the low
frequencies [33]. The choice of antenna frequency is a tradeoff
between the required depth and resolution. In this case, the
results indicate that the 1.2-GHz antenna is not as good as the
800-MHz antenna.

D. Analysis of SVM Design

This section compares the performances of one-versus-all
and pairwise SVMs. With the one-versus-all SVM approach,
if a sample is classified as positive by more than one classifier
or negative by all classifiers, it will be labeled as unclassified.
The unclassifiable regions of the one-versus-all approach are
shown in Fig. 11. Pairwise SVMs, on the other hand, have a
smaller unclassifiable area compared with one-versus-all SVMs
[23]. When a new ballast class is added to the system, the one-
versus-all approach requires retraining all the classifiers, while
the pairwise approach involves training new classifiers between
the added class and existing classes only.

Consider samples that do not carry sufficient resonances. The
one-versus-all system will not classify these samples into the

Fig. 11. Example of unclassifiable regions using one-versus-all SVMs. The
solid lines are the class boundaries, and the shaded regions represent the
unclassifiable areas.

Fig. 12. Comparison of classification rates between one-versus-all and pair-
wise SVMs.

Fig. 13. Comparison of SVM, k-NN (k = 15), and Mahalanobis distance
classifiers. Data set: f = 800 MHz.

predefined classes (50% clay, clean, and 50% coal). However,
the pairwise system will assign incorrect class labels to these
samples. The overall classification rates of the two SVM sys-
tems on the combined 800-MHz data set are shown in Fig. 12.
The performances of one-versus-all and pairwise SVMs are
nearly the same.
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Fig. 14. Block diagram of the STFT spectrogram implementation.

E. Comparison With Other Approaches

In this section, we compare the performance of the proposed
classification system with those of the k-NN and the Maha-
lanobis classifiers, using the same data set. We also compare the
proposed magnitude spectrum features with features extracted
from the STFT spectrogram.

1) Comparison With k-NN and Mahalanobis Distance Clas-
sifier: The k-NN classifier is a supervised learning algorithm
based on sample distances [18]. It classifies a new sample by
searching for the closest training samples. The label of the new
sample is decided via a majority voting scheme based on the
labels of the k nearest neighbors. In our implementation, k was
varied from 1 to 17 in steps of 2.

The Mahalanobis distance is a statistical distance measure
that takes into account correlation between variables. First,
the mean mi and the covariance matrix Ci of each class are
computed from the training population. For an observation x
to be classified, the Mahalanobis distance between x and each
class is computed as follows:

Di(x,mi) =
√

(x−mi)C
−1
i (x−mi)T (28)

where i denotes the class index. The sample x is assigned to the
class with the smallest Mahalanobis distance, i.e., the index of
the winning class i∗ is given by

i∗ = argmin
i

(Di). (29)

For comparison, fivefold cross-validation was applied. The
numbers of frequencies for the three 800-MHz data subsets
were 10, 9, and 8, respectively. Parameter k for the k-NN
classifier was chosen based on the training data set.

The results are shown in Fig. 13. For the 200- and 400-
mm antenna heights, the overall classification rates of the k-
NN classifier are superior to those of the Mahalanobis distance
classifier. With the 300-mm antenna height data, the k-NN
classifier and the Mahalanobis distance classifier have close
performance. For all the data subsets, the one-versus-all SVMs
outperform both the k-NN and the Mahalanobis distance clas-
sifiers in terms of overall classification rate. For example, on
the 300-mm data subset, the SVM classifier achieves a classi-
fication rate of 97.5%, while the k-NN and the Mahalanobis
distance classifiers reach 95.1% and 94.9%, respectively.

2) Comparison With STFT Spectrogram: In [9], Al-Qadi
et al. proposed a time-frequency approach using STFT. The
energy attenuation of the STFT spectrogram is utilized to
assess ballast conditions. However, their approach requires
visual inspection. Here, we are interested in the classification
performance of the STFT spectrogram features when used in
the proposed system.

Our STFT spectrogram implementation is shown in Fig. 14.
The GPR traces are preprocessed, and the discrete-time STFT is

TABLE VIII
CLASSIFICATION RATES FOR STFT SPECTROGRAM FEATURE.

DATA SET: COMBINED 800-MHz DATA SET

then applied to obtain the spectrogram. The discrete-time STFT
is defined as

X(m,ω) =
∞∑

n=−∞
x[n]w[n−m]e−jωn (30)

where X(m,ω) is the STFT of windowed data, x[n] is a GPR
trace, and w[n] is a window function. The spectrogram is
represented by a 2-D matrix, whereas the SVMs accept a 1-D
feature vector only. Therefore, the spectrogram is converted
into a row vector. Furthermore, considering the computational
complexity, we downsample the row vector to a feature vector
of 16, 32, 64, 128, or 256 elements. Next, the extracted feature
vectors are used as inputs to one-versus-all SVMs.

The results on the combined 800-MHz data set are shown
in Table VIII. The STFT spectrogram requires 128 frequency
points to achieve an overall classification rate of 92.9%, while
the proposed magnitude spectra yield a classification rate of
99.5% using only seven frequency points.

V. CONCLUSION

Compared with the traditional approach, GPR provides a
nondestructive and mobile means for fouling assessment of
railway ballast. In this paper, we have presented an automatic
classification system for GPR traces. The proposed system is
based on magnitude spectrum analysis and SVMs; it automates
the entire GPR signal processing and interpretation. Real-world
railway data of three common ballast fouling conditions (clean
ballast, 50% clay ballast, and 50% coal ballast) were collected
to evaluate the proposed system. We have made the compar-
ison between the proposed salient magnitude spectra and the
STFT spectrogram and between SVMs and other two common
classifiers. The experimental results indicate the following:
1) The proposed salient spectrum amplitudes are an efficient
representation of GPR signals; 2) the system performs well
in ballast fouling classification; for example, on the combined
800-MHz data set, the system can achieve a classification rate
of 99.5% using 7 salient frequencies; and 3) the system can
operate with different antenna heights, such as 200, 300, and
400 mm, provided that the training data set is representative of
antenna height variations.
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