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Abstract—This paper addresses the problem of combining
multiple radar images of the same scene to produce a more
informative composite image. The proposed approach for proba-
bilistic fuzzy logic-based image fusion automatically forms fuzzy
membership functions using the Gaussian—Rayleigh mixture
distribution. It fuses the input pixel values directly without
requiring fuzzification and defuzzification, thereby removing the
subjective nature of the existing fuzzy logic methods. In this
paper, the proposed approach is applied to through-the-wall
radar imaging in urban sensing and evaluated on real multi-
view and polarimetric data. Experimental results show that the
proposed approach yields improved image contrast and enhances
target detection.

Index Terms—Fuzzy logic, image fusion, through-the-wall
radar imaging.

I. INTRODUCTION

N REMOTE sensing applications, through-the-wall radar

imaging (TWRI) systems are used to detect the presence
of targets behind obstacles [1]-[4]. However, due to unknown
wall characteristics, multipath and clutter, the acquired radar
images tend to deviate from the ground truth, which hampers
target detection and localization.

During the sensing process, the same scene may be imaged
from different viewing angles, using one or multiple systems.
The same scene can also be imaged from the same viewing
angle, but with different polarizations. Both operations are
motivated by the fact that target radar cross section (RCS)
contains valuable information that single view or single polar-
ization does to provide [5], [6]. Since images acquired from
different viewing angles and polarizations provide different
representations of the same scene, multiple images can be
combined to produce a more informative composite image,
and enhance target detection and localization [7], [8].
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Multi-view and polarimetric imaging techniques have been
successfully applied in many radar applications [9]-[11].
However, existing image fusion methods are mostly developed
to fuse images from different modalities, such as between opti-
cal and infrared images [12]-[14], between Synthetic Aperture
Radar (SAR) and optical images [15]-[17], and between SAR
and panchromatic images [7], [8]. There have been few studies
regarding the fusion of images obtained from the same scene
and from the same type of sensors, which is important in
TWRI. Furthermore, due to the differences in indoor and
clutter scattering characteristics with other radar imaging
paradigms [18], existing fusion methods such as the Discrete
Wavelet Transform (DWT) and Principal Component Analysis
(PCA), which are commonly used in SAR, are not directly
applicable in TWRIL

To date, simple arithmetic image fusion methods have been
proposed to improve TWRI [18], [19]. Additive image fusion
was first introduced for TWRI in [19] to compensate for target
displacements that are caused by unknown wall parameters.
It was shown that the fusion of images obtained from different
standoff positions reveals the exact location of the targets.
The work in [18] later considered moving the antenna array
around a building, and then combining the images through
multiplicative fusion to improve detection and localization
of indoor targets. Additive and multiplicative fusion were
also used in [20], [21] to enhance a polarimetric radar by
combining the images obtained in co-polarization and cross-
polarization scenarios.

Although the arithmetic fusion techniques have been proven
successful in many cases, they have shortcomings. The addi-
tive fusion method tends to retain most of the clutter and
background noise, whereas the multiplicative fusion method
tends to suppress the targets with weak intensities. To address
this problem, an image fusion method that maintains target
intensities while suppressing clutter was proposed in [22],
where the fuzzy logic approach was considered. Evaluation of
the image fusion methods for TWRI has shown that the fuzzy
logic approach outperforms the arithmetic fusion methods and
produces an image with high target intensities and low clutter
levels [22]. However, like most fuzzy logic-based fusion algo-
rithms [12]-[14], [16], the method proposed in [22] requires
manual selection of the fuzzy membership functions (MF)
from the image intensity distributions. Since the distributions
may vary between images, determining the optimal parameters
for MF formulation becomes time-consuming.

In this paper, we propose a probabilistic fuzzy logic-based
image fusion approach that overcomes the drawbacks of the
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existing fuzzy logic methods. In the proposed approach, the
fuzzy MFs are automatically selected, where the intensity
distribution is modeled with a Gaussian-Rayleigh mixture.
By appropriately modeling the image intensity distribution, the
probability of a pixel value belonging to different regions can
be determined, thereby automatically forming the respective
MFs. Differing from the existing fuzzy logic method, the
proposed approach does not require the fuzzification and
defuzzification processes. Instead, the formulated membership
values are used as weights in the fusion process, where a
weighted sum of arithmetic operators is applied to the input
images for fusion.

The existing arithmetic, DWT, PCA, fuzzy logic, and
the proposed image fusion methods are evaluated and com-
pared using real two-dimensional (2D) and three-dimensional
(3D) polarimetric and multi-view images, collected at the
Radar Imaging Lab, Center for Advanced Communications,
Villanova University. The performance of the proposed
approach in terms of enhancing target detection was also
compared with the iterative likelihood ratio test (LRT) detector
that fuses information obtained from multi-polarization and
multi-view images at the decision level [23]. Experimental
results show that the proposed probabilistic approach outper-
forms the existing image fusion methods, both qualitatively
and quantitatively, by enhancing target regions and suppressing
clutter. It is also observed that the proposed approach outper-
forms the LRT detector by producing an output image with a
higher detection rate. Therefore, the proposed fusion approach
can be used to enhance the performances of target detection
methods [23], [24].

The remainder of this paper is organized as follows.
Section II describes the existing pixel-level fuzzy logic-
based fusion method for TWRI. Section III presents the pro-
posed probabilistic fuzzy logic-based image fusion approach.
Section IV analyzes the performance of the proposed approach
on real 2D and 3D TWRI data, and Section V concludes the

paper.

II. EXISTING Fuzzy LOGIC APPROACH

In this section, we discuss briefly the fuzzy logic approach
for image fusion. Specifically, we consider the method intro-
duced for pixel-level through-the-wall radar (TWR) image
fusion that was proposed in [22]. The fuzzy logic approach
is implemented through a Fuzzy Inference System (FIS) that
formulates the mapping from two inputs to a single output.
First, the inputs are converted into linguistic variables using a
set of predefined MFs. In the fuzzification process, the degree
of membership to a fuzzy set is determined for each input.
Then, the inference engine is invoked, where fuzzy operators
are applied to the fuzzified input images, based on a set of
fuzzy rules. All the results are then aggregated and defuzzified
to produce the final output. The flow chart of the FIS with two
inputs and one output is shown in Fig. 1.

A. Fuzzy Membership Functions

The MFs are first formulated for the fuzzification process.
As proposed in [22], a typical TWR image, with pixel values
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Fig. 1. Flow chart of a fuzzy inference system.
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Fig. 2. An example of the formulated M membership functions, with
M =4, v =1{0,85, 170,255}, ¢ = 30.

ranging from 0 to 255, can be divided into M regions,
for instance, background noise, clutter, sidelobe, and targets.
A simple method is to divide the intensity range into equal
intervals. Each region is then formulated as a fuzzy set

Fm (m=1,..., M), represented with a Gaussian MF:
(x —cm)?
S (3 Oy cm) = exp { ———"—1, (1)
205

where x is the intensity value, and ¢, and c,, are the width
and the center of the MF. Figure 2 shows the MFs formulated
in (1) for M = 4. Note that other segmentation techniques,
such as K-means or fuzzy C-means clustering, can also be
applied to determine the M regions.

After formulating the MFs, each pixel value x; is assigned a
value u,,(x;), which is its degree of membership to the fuzzy
set Fy,. In other words, each crisp pixel value x; is mapped
to M membership degrees un,(xj) = fu(xi), m=1,..., M.
The value u,,(x1) = 1 means that the intensity value x; is
fully a member of the m-th fuzzy set, whereas 0 <, (x;) < 1
indicates that x; only partially belongs to the fuzzy set F,.

B. Fuzzy Rules

After fuzzifying the input images, fuzzy rules are then
applied. Instead of using a global operator that is similar to
pixel-wise addition or multiplication, operators in the form of
IF-THEN statements are applied to the fuzzified images, based
on a set of pre-determined rules. Consider two input images,
X1 and X», and the aim is to obtain the fused output image Y.
Let x1, x2, and y denote the intensity values of a given pixel
in X1, X3, and Y, respectively. The statement

(IF x; IS F;) AND (IF x; IS F;) THEN (y IS Gi),
can be represented as
Ry :FixFj— Gk, i,j,k=1,...,M, 2)

where R, denotes the g-th fuzzy inference rule.
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TABLE 1
AN EXAMPLE OF FUZZY RULES FOR M FuzzY SETS AND N IMAGES,
WHEREM =4 AND N =2

Fi
Fi | F2 | F3 | Fa
Fi
F1 Gi | G1 | G3 | G
F2 Gi | G2 | G3 | Gu
F3 G3 | G3 | G3 | Gu
Fa Gs | G4 | Ga | Ga

In fuzzy image fusion, the input and output fuzzy sets
are defined on the same universe of discourse; therefore,
albeit not necessary, the same MFs presented in (1) can be
used to represent the output fuzzy sets, Gy, k = 1,..., M.
Furthermore, in fuzzy fusion, the aim is to maintain or enhance
certain regions (i.e., targets) and suppress others (i.e., clutter
and background noise). To achieve this, we define the output
fuzzy sets as follows:

Gmax(i,j)» if max{i, j} > M/2,
Gmin(i,j}, otherwise.

Gk = 3)
For M membership functions and N input images, there are
MV fuzzy rules, denoted as Ry, (g=1,..., MY). An example
of the fuzzy rules for four fuzzy sets and two input images is
summarized in Table I. The entry at column F; and row F;
is the output fuzzy set Gy.

For a given rule Ry, its firing strength (or weight) 7, is
computed as a conjunction between the premise elements:

Mg = wi(x1) Apj(x2), g=>G0—1DM+j, “4)

where A denotes the conjunction operator. The minimum and
product operators are the most commonly used conjunction
operators; here, the minimum operator is used to compute the
firing strength of each rule.

C. Aggregation and Defuzzification

Applying fuzzy operators to the input pixels produces a set
of M rules R, (g=1,..., MY"). These rules are aggregated
and then defuzzified using the centroid of area to convert the
degree of membership and fuzzy set into a pixel value.

Here, the max-min operator is employed to compute
the aggregate output MF. First, the qualified consequent
MF for each rule is computed using the min operator
fq (x) = min{zg, fi(x)}, where fi(x) is the MF of the output
fuzzy set Gy resulting from the rule R,. Then, the overall
output MF is obtained by aggregating the consequent MFs
using the max operator:

fax) = max{fi(x), H(x), ..., fyv (X)}. Q)

In other words, f4(x) is the aggregated MF curve produced
by the union of all the consequent MFs. The defuzzification
process is then applied to obtain the fused pixel value:

% falox da

YT ) dx ©
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Fig. 3. An example of membership function formulation using the proposed
approach: (a) K distributions from the Gaussian-Rayleigh mixture modeling,
and (b) the formulated M membership functions, with K = 13 and M = 4.

Because the fuzzy logic-based fusion is a pixel-level operation,
the fusion process is repeated for each pixel in the input
images.

Albeit successful, the existing fuzzy logic approach requires
manual formulation of the fuzzy MFs, which is generally
obtained by observing the image intensity distributions. Since
the acquired images depend on the imaging system, and the
target location and orientation, determining the optimum fuzzy
MFs can be time-consuming.

III. PROBABILISTIC FuzzY FUSION APPROACH

In this section, we present a new probabilistic approach for
fuzzy logic-based image fusion to overcome the drawbacks of
the existing fuzzy fusion methods. In the proposed approach,
the fuzzy MFs are automatically learned, where the intensity
distributions are modeled with a Gaussian-Rayleigh mixture.
The degrees of membership to different regions are then used
as weights in the fusion process, and a weighted sum of
arithmetic operators is applied to the input images.

A. Automatic Formulation of Membership Functions

Unlike the fuzzy fusion method that requires manual selec-
tion of the fuzzy MFs, the proposed method uses an automated
approach for MF formulation. It was shown in [23] that the
probability density function (pdf) of TWR images generally
resembles a combination of Gaussian and Rayleigh distribu-
tions. Thus, we propose to use a Gaussian-Rayleigh mixture
to model the pdf of the observed TWR images. The number
of mixture components K is automatically determined through
the Bayesian information criterion (BIC) [25]. To reduce the
number of rules, the K Gaussian-Rayleigh distributions are
then combined to form M membership functions. Figure 3
shows an example of the automated MF formulation for
M = 4 regions.

To date, automatic approaches for MF formulation, based on
machine learning and statistical models, have been proposed
to form trapezoidal and Gaussian MFs adaptively [26]-[30].
However, these methods were mostly proposed for a specific
scenario, system, or dataset [31], [32]. In our approach, the
MFs are learned from the pdf of the observed images using a
mixture of Gaussian and Rayleigh distributions.
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1) Gaussian-Rayleigh Mixture Modeling: In a typical TWR
image, the lowest intensity values are mostly caused by clutter
or background noise, whereas the highest intensity levels
usually belong to the target regions. Because there is a high
concentration of low pixel values and a low concentration of
very high pixel values, the image intensity distribution tends
to peak at both ends. Therefore, the noise and clutter region
(with the lowest intensity levels) and the target regions (with
the highest intensity levels) are more appropriately modeled
as Rayleigh distributions

X x2
pr(x):§exp eyl R >0, @)

and the remaining regions are modeled as Gaussian distribu-
tions

®)

)2
pg(x) = u]

1
V2mo? P { 202
Similarly to the Gaussian mixture modeling-based segmen-
tation [25], the Gaussian-Rayleigh mixture modeling uses
the EM algorithm to estimate the mixture parameters. The
proposed pdf can be expressed as a weighted sum of K class
conditional pdfs:

K
p(x) =" ox pr(x|60), €

k=1

where wy is the component weight, and 6 represents the
mixture parameters, 6; = (v, akz).

Let X denote the composite image formed by concatenating
all input images, and let x; (i = 1,..., Q) be the intensity
value of the i-th pixel of X. Here, we assume the image X
is lexicographically ordered into a Q x 1 vector. The mixture
parameters 0y (k = 1,..., K) are first estimated from the
intensity distribution of the composite input image X. The
conditional pdf of the k-th mixture component pi(x|0x) is
computed based on the current parameter estimate 6y,

2
%exp —% ulx), ifk=1,
o 20}

1 [uwm}
eXpPy———=3 (>
/27 &kz 20y,

pr(x10x) = (10)
ifl <k <K,
255 — 255 — x)?
_—exp —(7)“) (255 — x),
o 20k

ifk = K,

where u(x) is the unit step function. Once the conditional
pdfs are computed, the posterior probability of class k, given
pixel x;, is determined as

A ; 16

Pk,FM, k=1,...,K. (D
> an prlxilfr)
k=1

Let Q be the total number of pixels in the composite
image X. The component weights @ and the parameter vector
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ék are then updated as
1<, .
m=52&h (12)
i=1
0, ifk=1orK,
=1 1 & P x (13)
—> == ifl<k<K,
i
[ 0 5 2
1 X;
e ifk=1orK,
e K
~AD -
6f = 0 - (14)
1 P 5,2
_ZM, ifl <k <K.
05 @k

The steps of computing the conditional pdf, determining the
posterior probability, and updating the component weights and
parameter vector are repeated until the relative change in the
the mixture parameter estimates is smaller than a tolerance
e=1075,

In the Gaussian-Rayleigh mixture modeling method, the
optimum number of mixture components K is determined by
minimizing the BIC over K:

Qo
BIC = =2 log;o[p(xi|K,0)]+ K logp (@), (15)
i=1
where p(x;|K, ) is the conditional pdf in (9) for a given
mixture model order K and the corresponding parameter
vector 6.

2) Formation of Membership Functions: After obtaining the
mixture parameter estimates, w; and 0 (k = 1,..., K), the
K components in (10) are combined into M regions to form the
MFs of the input fuzzy sets. Here, we define the M regions to
be background noise, clutter/sidelobe, and two target regions
(weak target and strong target regions). The clutter/sidelobe
region overlaps with the weak target region on one side, and
with the noise region on the other. Thus, we set the K -th com-
ponent as the strong target region, the (K — 1)-th component
as the weak target region, and (K — 2)-th component as the
clutter/sidelobe region. The remaining (K — 3) components
are combined to form the background noise region. The
respective MFs for the M regions (M = 4) are formed as
i @k pi(x10)

, ifm=1,
px)

k=1

Sfm(x)= (16)

g Pg(x10q) ifm =234

s q:K_4+ma
p(x)

Figure 4 shows the segmented regions of an input image,
which are determined by the proposed automated method for
MF formulation. It can be observed that the proposed method
successfully distinguishes between the target, clutter/sidelobe,
and background noise regions.

The formulated MFs are then evaluated with the input
pixel values. The output of each MF is a degree of mem-
bership u,,(x;) associated with the pixel value x;. In other
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Fig. 4. An example of the segmented regions determined by the
proposed approach: (a) input image, (b) strong and weak target region,
(c) clutter/sidelobe region, and (d) background noise region.

words, (16) is evaluated by substituting the input pixel values
to produce the set {u1(xi), pu2(xi), u3(xi), pa(xi)}, where
,um(xi) € [Oa 1]

B. Fuzzy Fusion Operation

After determining the M degrees of membership of each
pixel, we propose to use a combination of arithmetic operators,
such as multiplication, maximum, and square root, for fusion.
The fusion process is performed on the normalized input
images. In the proposed approach, we apply the multiplicative
operator to suppress the pixel values in the background noise
and clutter/sidelobe regions. For the target regions, we apply
the maximum operator to maintain all the pixel values in the
weak target region, and the square root of the maximum to
enhance the pixel values in the strong target region.

Consider N inputs images, X1, X2,..., Xy. Let x;; be
the i-th pixel value of the j-th image. Here, we assume
each image is transformed into a column vector using a
lexicographical ordering. For each pixel x; j, we compute its
degree of memberships u,,(x; ;) (m = 1,...,4) using (16).
Let j* denote the index of the largest pixel x; ; at the i-th
position, for j = 1,..., N; that is, j* = argmax{x; ;}. The

J
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output pixel value is calculated as a weighted sum of fused
input regions:

M
Vi =D um(xi ) Fn(xij),

a7
m=1
where the fused input region Fy, (x; ;) is given by
N

H Xi,js ifm <2,
Fu(xij) = 1 j=1 (18)

Xi, j*, if m= 3,

/x,-,j*, if m =4.

The fusion process is repeated for each pixel in the input
images.

IV. EXPERIMENTS AND ANALYSIS

In this section, the proposed probabilistic fuzzy approach is
evaluated on real 2D and 3D polarimetric images, collected
at the Radar Imaging Lab, Center for Advanced Communica-
tions, Villanova University. The performance of the proposed
approach is compared to the existing arithmetic and fuzzy
fusion methods. Comparisons with the DWT and PCA image
fusion methods that are commonly used in SAR imaging are
also presented. In DWT fusion, the coefficients of the decom-
posed source images are fused prior to performing inverse
DWT for image reconstruction. In PCA fusion, each pixel in
the fused image is the weighted sum of the pixels in the input
images, where the weights are the significant eigenvalues of
the covariance matrix. In addition, the performance of the
proposed approach in enhancing target detection, in terms
of the detection rate, is also compared to an iterative LRT
detection method proposed in [23]. In this article, the spatial
units of all radar images are meters.

All images included in the following examples are generated
based on frequency-domain backprojection [1]. We use an
oversampled Cartesian grid for the range and cross-range
variables. Note that high resolution imaging [33], [34] could be
applied to the backprojection image before fusion, and using
them as input images would lead to different results. In all
cases, we assume that the reference empty scene is known, and
is used for background subtraction, prior to image formation
and fusion. Note also that wall clutter mitigation techniques
[35], [36] can be employed in the case that background
subtraction cannot be performed.

A. Experimental Setup

Two real scenes are considered in our experiments. The first
scene consists of calibrated targets, acquired from a single
viewpoint using multiple polarizations. The second scene is
a populated scene with both calibrated targets and objects
typically found in an office. The data corresponding to the
populated scene are acquired from multiple views with a single
polarization.
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Fig. 5.
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Fig. 6. The populated scene: (a) the scene is imaged through a homogenous concrete wall from two vantage points; (b) the schematic diagram of the scene.

1) Calibrated Scene: Horizontal and vertical polarization
data sets are collected from a calibrated scene shown in
Fig. 5. This scene contains a sphere, a top hat, a vertical
dihedral, two dihedrals rotated at 22.5 and 45 degrees, and two
trihedrals. These objects are placed at different downrange,
cross-range and elevation bins. For each polarization setting,
the scene is imaged with a 1 GHz stepped-frequency signal
with a step size of 5 MHz and center frequency of 2.5 GHz.
Imaging is performed through a non-homogenous plywood
and gypsum board wall, using a 57-element linear array with
an inter-element spacing of 22 mm. A total of 114 multiple
polarization images are collected from the scene; each image
has 214 x 161 pixels. Using the same physical hardware
configuration, horizontal and vertical polarized 3D images are
also acquired to produce images of size 214 x 161 x 57 pixels.

2) Populated Scene: Multi-view vertical polarization data
sets are also collected from a populated scene, which consists
of a vertical dihedral, a sphere, a table with metal legs, and

a chair. Each object is placed at different downrange, cross-
range and height, as shown in Fig. 6. The data from the scene
are collected using a stepped-frequency signal, consisting of
801 monochromatic frequencies with a 3 MHz step centered
at 2.5 GHz, that is transmitted and received by a 57-by-57
element planar array with an inter-element spacing of 22 mm.
Imaging is performed through a 140 mm thick homogeneous
concrete wall from two vantage points, namely the front and
the side views. Images of size 117 x 117 pixels, corresponding
to the front and side views, at the heights of the dihedral and
the table are acquired. The dihedral elevation represents an
example of a scene with high signal-to-clutter ratio, whereas
the images corresponding to the table elevation represent the
case of low signal-to-clutter ratio.

B. Performance Measure

To evaluate the performance of the respective image fusion
methods, the fused images are compared in terms of the
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Improvement Factor in the Target-to-Clutter Ratio (IF) and the
target improvement factor (TIF). The IF measures the overall
enhancement of the output image, while the TIF measures the
enhancement in the target regions only. Let P, denote the
average power of region r in image X,, where r is a target
or clutter region, and ¢ is the input or output image. The IF
is given by

P x P, i
IF = 10log,, [ target,output clutter,mput:| ’ (19)
Ptarget,input X Pclutter,output
and the TIF is defined as
P
TIF = 10log;, [7“’"‘33"0““’“1 : (20)
Ptarget,input
The average power P, can be expressed as
1
Pra =g 2. XqlkD. @)

" (kyer

where Q, is the number of pixels in region r. It should be
noted that X, in (19) and (20) consists of either the original
images to be fused, or the fused image produced by the
additive fusion. These images serve as a reference against
which the improvement in image quality is assessed.

Albeit suitable as a contrast measure, a higher IF or TIF
does not necessarily equal to better target detection. Hence,
we also evaluate the performance of the image fusion methods
in enhancing target detection. The receiver operation charac-
teristics (ROC) curve is used to evaluate the probability of
target detection. The probability of detection (PD), or detection
rate, denotes the percentage of pixels in target regions that
are correctly detected. Conversely, the probability of false
alarm (PFA) or false alarm rate (FAR) is the percentage of
pixels in non-target regions (background noise, clutter, and
sidelobe) that are incorrectly detected. After normalizing the
fused image, thresholds in an increment of 10~* are applied
to the image. At each threshold value, the respective ratios are
calculated. For the calculations of the IF, TIF, PD and PFA,
the pre-defined target and clutter regions for each scene (based
on the ground truth) are provided in Figs. 7 to 9.

The detection rate obtained by applying simple thresholding
to the fused images is also compared to that of an existing
iterative LRT detection method [23]. Since the iterative LRT
detection method requires a predefined FAR, the method is
evaluated with a range of FAR values to obtain their respective
PD values. The ROC curve produced by the iterative LRT
detection method is then obtained.

During the detection process, the iterative LRT detector
applies morphological filtering to obtain an improved detection
result, where the size of the structuring element is automati-
cally determined by the goodness-of-fit function [37]. Hence,
we also apply a morphological filter, with the same type and
size as that of the iterative LRT detector, as a post-processing
step, to the output images produced by the fusion methods
considered. The PD and PFA of the thresholded post-processed
image are then calculated.

C. 2D Image Fusion

After image registration and normalization, the input images
are fused using the proposed approach. The proposed approach
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Fig. 8. The binary masks for the populated scene at the dihedral elevation:
(a) target mask; (b) clutter mask. See electronic color image.
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Fig. 9. The binary masks for the populated scene at the table elevation:
(a) target mask; (b) clutter mask. See electronic color image.

is also compared with the additive, multiplicative, DWT, PCA
and the existing fuzzy fusion method. Each method is applied
to fuse multiple polarization images from the calibrated scene
and multi-view images from the populated scene.

1) Calibrated Scene: Figure 10 shows the input and output
images, produced by the arithmetic, DWT, PCA and the
fuzzy fusion methods, as well as the proposed probabilistic
approach. By evaluating the image fusion methods on the
2D polarimetric imaging data, we observe that the additive
fusion method (Fig. 10(c)) simply adds the images together
and retains most of the background noise from both input
images. This is evident from the IF (shown in Table II); the
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Image fusion results of the calibrated scene: (a) horizontal and (b) vertical polarization input images, and output images from the (c) additive,

(d) multiplicative, () DWT, (f) PCA, and the (g) existing and (h) proposed fuzzy logic-based image fusion methods.

additive fusion method produces a degraded image when using
the horizontal polarization image as a reference. This is due to
the maintenance of the background noise and clutter from the
vertical polarization image. Similarly, both DWT and PCA
fusion methods also retain most of the noise, as shown in
Figs. 10(e) and 10(f), and produce degraded images that are
poorer than that of the additive fusion. The multiplicative
fusion method (Fig. 10(d)) reduces the background noise,
but it also reduces the target intensities. This reduction is
caused by the enhancement of overlapping pixels in both input
images, while non-overlapping pixels are suppressed through
multiplication. While both fuzzy logic-based fusion methods
successfully maintain all the targets and suppress clutter, the
proposed probabilistic approach produces an output image
with the highest IF, as shown in Table II.

When we consider target regions only, Table III shows
that all the methods evaluated outperform the multiplicative
fusion. This is because multiplicative fusion suppresses the
intensity levels of the targets. Among all the methods tested,
the proposed probabilistic approach produces an output image
with the highest TIF.

Each fused image is then normalized and thresholded to
calculate the PD and PFA. Figure 11 shows the ROC curves
produced by applying simple thresholding to the output of the
proposed probabilistic fuzzy fusion approach and the input
images. It is observed that by fusing the input images, the
proposed approach improves target detection. Figure 12 shows

TABLE II
IMPROVEMENT FACTOR IN THE TARGET-TO-CLUTTER RATIOS
(IF) IN dB OF THE DIFFERENT IMAGE FUSION METHODS
FOR THE CALIBRATED SCENE

Method Harigontgl Ver{ica'l Addi'tive
Polarization | Polarization Fusion
Additive fusion -1.6687 1.3262 0
Multiplicative fusion 7.3283 10.3233 8.9971
DWT fusion -2.1087 0.8862 -0.4400
PCA fusion -2.0862 0.9087 -0.4175
Fuzzy fusion 5.4690 8.4640 7.1378
Probabilistic fuzzy fusion 12.1833 15.1782 | 13.8520
TABLE III

TARGET IMPROVEMENT FACTOR (TIF) IN dB OF THE DIFFERENT IMAGE
FUSION METHODS FOR THE CALIBRATED SCENE

Method Horiz_ont_al Verzfica_l Addi-tive

Polarization | Polarization Fusion
Additive fusion 0.3095 -1.2465 0
Multiplicative fusion -1.5777 -9.1338 -7.8872
DWT fusion 0.5841 -0.9719 0.2747
PCA fusion 0.5684 -0.9876 0.2589
Fuzzy fusion 0.6028 -0.9532 0.2933
Probabilistic fuzzy fusion 1.6999 0.1439 1.3904

the ROC curves produced by thresholding the output images
of all the fusion methods considered, as well as that of the
iterative LRT detector. We observe that the proposed approach
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TABLE IV
PROBABILITY OF DETECTION AT 5% FALSE ALARM RATE

Method Detection Rate (%)
Thresholding of additive fusion image 92.87
Thresholding of multiplicative fusion image 91.23
Thresholding of DWT fusion image 89.91
Thresholding of PCA fusion image 90.37
Thresholding of fuzzy fusion image 91.21
Thresholding of probabilistic fuzzy fusion image 93.16
Thresholding of probabilistic fuzzy fusion image

. : . 97.13
with morphological filtering
Iterative LRT detector 92.77

0.95-

0.9 ‘

0.85

Probability of Detection
IS

— = lterative LRT detector
Thresholding of additive fusion image
Thresholding of multiplicative fusion image
Thresholding of DWT fusion image
Thresholding of PCA fusion image
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with morphological filtering
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Fig. 12.  Receiver operating characteristics curves of the iterative LRT
detector and the thresholding of the five image fusion methods and the
proposed approach with and without morphological filtering. See electronic
color image.

leads to higher PD rate, compared to the other five fusion
methods and the LRT detector. Applying the morphological
filter as a post-processing step further improves the detection
rate of the proposed approach. When applying the morpho-
logical filter to the outputs of the other fusion methods, we
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image.

observe from Fig. 13 that the filtered image produced by the
proposed approach has a higher detection rate. While the
morphological filter enhances the performance of the fuzzy
logic approaches, it reduces the performance of the other
fusion methods. Table IV shows the PD at 5% FAR for the
iterative LRT detector and the thresholding of images produced
by the five fusion methods and the proposed approach with and
without post-processing. Note that because the morphological
filter did not improve the performance of the non-fuzzy fusion
methods (see Fig. 13), the detection rates calculated are not
included in Table IV.

With a high IF, TIF and the ability to enhance target
detection, the proposed approach is proven effective for pixel-
level TWR image fusion.

2) Populated Scene: Figure 14 shows the registered input
and output images centered at the dihedral elevation, along
with the fusion results from the arithmetic, DWT, PCA,
and the fuzzy fusion methods. As shown in Figs. 14(c),
14(e) and 14(f), the additive, DWT and PCA image fusion
methods retain most of the background noise. Although the
multiplicative fusion method (Fig. 14(d)) reduces the back-
ground noise, it also reduces the target region. In comparison,
both fuzzy logic-based fusion methods maintain the targets,
while suppressing clutter. It can be observed from Fig. 14 that
the proposed probabilistic approach produces an output image
that has less clutter than the fuzzy fusion method. The output
image also has the highest IF, as presented in Table V.

Similar to the results of the calibrated scene, Table VI shows
that the multiplicative fusion method generally has a negative
TIF. This is due to its over-suppression and reduction of the
target regions. Since the fuzzy fusion method retains the target
with the highest intensity levels, the TIF produced is also
the highest among all the methods considered. The proposed
probabilistic approach also maintains targets to produce a

similar result to that of the fuzzy fusion. Since the additive
fusion maintains most of the clutter, and both the DWT and
PCA fusion methods are unable to maintain the full shape of
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Image fusion results of the populated scene (dihedral level): (a) front and (b) side views of the dihedral elevation, and output images from the

(c) additive, (d) multiplicative, (e) DWT, (f) PCA, and the (g) existing and (h) proposed fuzzy logic-based image fusion methods.

TABLE V
IMPROVEMENT FACTOR IN THE TARGET-TO-CLUTTER RATIOS (IF) IN dB
OF THE DIFFERENT IMAGE FUSION METHODS FOR THE POPULATED
SCENE (AT DIHEDRAL LEVEL)

Front Side Additive
Method View View Fusion
Additive fusion -6.4902 2.5040 0
Multiplicative fusion 3.3567 | 12.3509 9.8469
DWT fusion -8.1877 0.8066 | -1.6974
PCA fusion -8.8724 0.1219 | -2.3822
Fuzzy fusion -0.7617 8.2326 5.7285
Probabilistic fuzzy fusion 3.3928 | 12.3870 9.8830

TABLE VI

TARGET IMPROVEMENT FACTOR (TIF) IN dB OF THE DIFFERENT
IMAGE FUSION METHODS FOR THE POPULATED SCENE
(AT DIHEDRAL LEVEL)

Front Side Additive
Method View View Fusion
Additive fusion -0.8472 -1.6330 0
Multiplicative fusion -11.1122 | -11.8980 | -10.2650
DWT fusion -0.0950 -0.8808 0.7523
PCA fusion 0.5372 -0.2486 1.3844
Fuzzy fusion 2.2966 1.5108 3.1438
Probabilistic fuzzy fusion 2.1694 1.3836 3.0166

the target, all three methods produce a TIF that is lower than
that of the probabilistic fuzzy fusion approach.

In Fig. 15, the registered input images obtained at the
table elevation are shown together with the respective outputs
obtained from the six image fusion methods. Figures 15(a) and
15(b) clearly show the metal legs of the table at the correct
locations (depicted as white circles). However, due to the
low signal-to-noise ratio, it is difficult to discern the targets’

TABLE VII
IMPROVEMENT FACTOR IN THE TARGET-TO-CLUTTER RATIOS (IF)
IN dB OF THE DIFFERENT IMAGE FUSION METHODS FOR THE
POPULATED SCENE (AT TABLE LEVEL)

Front Side Additive
Method View View Fusion
Additive fusion -0.3039 | 0.9911 0
Multiplicative fusion 4.6467 | 5.9417 4.9506
DWT fusion -0.3511 | 0.9438 | -0.0472
PCA fusion -0.3032 | 0.9917 0.0006
Fuzzy fusion 0.5837 | 1.8786 0.8876
Probabilistic fuzzy fusion 2.5932 | 3.8881 2.8971

presence without any prior knowledge. Through image fusion,
all the image fusion methods did not perform well enough to
distinguish the target’s presence. This is because there is heavy
clutter with similar or higher intensity values than the target
pixels. Although the multiplicative fusion has the highest IF,
as shown in Table VII, we observe that both target and clutter
were suppressed. The fuzzy logic-based methods, on the other
hand, retain most of the targets. However, due to the high
clutter pixel values, the fuzzy logic approaches also retained
them in the fused results, thus producing an output image with
low IF. It is generally observed that the proposed approach
produces images with high IF, except when the input images
have low signal-to-clutter ratio.

Table VIII presents the target enhancements results for all
the fusion methods considered. The results in this table show
that the multiplicative fusion generates an output image with
the lowest TIF, due to the suppression of targets. In contrast,
the proposed approach produces an output image with high
target and low clutter levels, and therefore has a higher TIF
compared to the other methods considered.
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Image fusion results of the populated scene (table level): (a) front and (b) side views of the table elevation, and output images from the (c) additive,

(d) multiplicative, (¢) DWT, (f) PCA, and the (g) existing and (h) proposed fuzzy logic-based image fusion methods.

TABLE VIII
TARGET IMPROVEMENT FACTOR (TIF) IN dB OF THE DIFFERENT
IMAGE FUSION METHODS FOR THE POPULATED SCENE
(AT TABLE LEVEL)

Front Side Additive
Method View View Fusion
Additive fusion -0.8862 0.3403 0
Multiplicative fusion -6.0073 | -4.7808 -5.1210
DWT fusion -0.7939 0.4326 0.0923
PCA fusion -0.8856 0.3409 0.0006
Fuzzy fusion -0.2319 0.9946 0.6543
Probabilistic fuzzy fusion 0.3700 1.5965 1.2562

We also apply thresholding to the normalized fused images
to calculate the PD and PFA. Table IX shows the detec-
tion rate at 5% FAR for all the fusion methods, as well
as for the proposed approach with morphological filtering.
The detection rates are also compared to that obtained by the
iterative LRT detector. It can be observed that the proposed
probabilistic fuzzy fusion approach generally has the highest
detection rate, except when the clutter has a similar or higher
intensity value than the target pixels. In the low signal-to-
clutter ratio scenario, the iterative LRT detector produces a
higher detection rate than the proposed approach; however,
LRT detection rate is still lower than the other image fusion
methods considered. After applying the morphological filter,
the proposed approach outperforms the iterative LRT detector
by producing an output image with a higher detection rate.

The experimental results indicate that the additive, DWT
and PCA fusion methods maintain most of the background
noise and clutter. In some cases, the target pixel values are

TABLE IX
PROBABILITY OF DETECTION AT 5% FALSE ALARM RATE

Scene Method Detection
Rate (%)
Thresholding of additive fusion image 57.39
Thresholding of multiplicative fusion image 67.33
Thresholding of DWT fusion image 40.39
Dihedral | Thresholding of PCA fusion image 30.19
level Thresholding of fuzzy fusion image 55.48
Thresholding of probabilistic fuzzy fusion 67.57
image

Thresholding of probabilistic fuzzy fusion

. . . . 71.75
image with morphological filtering
Iterative LRT detector 40.78
Thresholding of additive fusion image 58.43
Thresholding of multiplicative fusion image 58.19
Thresholding of DWT fusion image 54.20
Table Thresholding of PCA fusion image 58.47
level Thresholding of fuzzy fusion image 49.01
Thresholding of probabilistic fuzzy fusion 5380
image
Thresholding of probabilistic fuzzy fusion 61.97
image with morphological filtering )

Iterative LRT Detector 58.26

also reduced. This is because the three methods use addition
as a fusion operator, which is similar to the averaging operator.
Thus, some targets are enhanced, while others are suppressed
during fusion. As a result, the produced image has a poor IF,
albeit having a high PD. The experimental results also indicate
that the multiplicative fusion produces an output image with
a high IF. However, this is only valid when target pixels are
located at the same location in the input images. Otherwise,
all the pixel values will be suppressed, and an output image
with low TIF will be produced. Due to the over-suppression
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Fig. 16. Three dimensional image fusion results: (a) horizontal and (b) vertical polarization input images, and output images from the (c) additive,
(d) multiplicative, (¢) DWT, (f) PCA, and the (g) existing and (h) proposed fuzzy logic-based image fusion methods.

of the pixel values, the multiplicative fusion does not enhance
target detection significantly.

In comparison, the proposed approach produces a fusion
result with a high IF, and enhances target detection. This
is evident when clutter pixel values in the input images are

lower than that of the target pixels. Because targets generally
have high pixel values, when the input images have low
signal-to-clutter ratios, the proposed approach may not
perform well. However, this reduction in performance for
scenes with low signal-to-clutter ratio applies to not only the
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proposed approach but also to all other methods evaluated.
To improve the performance of the proposed approach, mor-
phological filtering can be applied as a post-processing step
after fusion. Alternatively, image enhancement techniques,
such as image restoration or image segmentation, can be
applied to the input images, prior to fusion.

D. 3D Image Fusion

Using the polarimetric 3D images collected from the cal-
ibrated scene, we compare the performances of the additive,
multiplicative, DWT, PCA and the fuzzy logic-based fusion
methods. Figure 16 shows the input and output images,
produced by the additive, multiplicative, DWT, PCA, fuzzy
and the proposed probabilistic fuzzy fusion methods. Similar
to the results on 2D image fusion, the additive, DWT and
PCA fusion retain most of the noise from both input images.
Although the multiplicative fusion manages to suppress the
noise, targets intensities are also reduced. The fuzzy logic
approaches produce a balanced output image that has low
clutter and high target intensities. Furthermore, the proposed
approach produces images with less clutter compared to the
existing fuzzy fusion method.

V. CONCLUSION

In this paper, we have proposed a probabilistic approach
to fuzzy logic-based image fusion. The proposed approach
applies the Gaussian-Rayleigh mixture modeling to automati-
cally formulate the MFs, which are then employed for image
fusion in through-the-wall radar imaging. Experimental results
based on real 2D and 3D polarimetric and multi-view data
demonstrate the effectiveness of the proposed approach for
pixel-level image fusion. The proposed fuzzy logic-based
image fusion approach, which is free from human intervention,
was compared with several existing fusion methods for TWR
images and was shown to improve both image contrast and
target detection.
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