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This paper proposes a vision system using a 3-D range camera for scene segmentation and pedestrian
classification. The system detects and segments objects in the foreground, measures their distances to
the camera, and classifies them into pedestrians and non-pedestrian obstacles. Combining range and
intensity images enables fast and accurate object segmentation, and provides useful navigation cues such
as the range and type of nearby objects and the ground surface. In the proposed approach, a 3-D range
image is segmented using histogram processing and mean-shift clustering. The ground surface is
detected by estimating its normal vector in 3-D space. Fourier and GIST descriptors are then applied
on each detected region to extract shape and texture features. Finally, support vector machines are used
to classify objects; in this paper we focus on differentiating pedestrian and non-pedestrian regions. The
performance of the proposed system is evaluated with two datasets. One dataset for object segmentation
and pedestrian classification is acquired by us using a 3-D range camera; the other is a public RGB-D data-
set for people detection. Experimental results show that the proposed system performs favorably com-
pared to some existing segmentation and feature extraction approaches.

� 2013 Elsevier Inc. All rights reserved.
1. Introduction

Detecting and classifying objects in a 3-D scene plays an impor-
tant role in assistive navigation for the blind [1], road safety [2,3],
surveillance [4], and many other applications. In the traditional ap-
proach, visual recognition consists of image segmentation followed
by classification [5]. Many image segmentation methods are based
on low-level features such as color and texture. For example, Gould
et al. proposed an object classification system based on multi-class
image segmentation [6]. Their system labels pixels as background
or foreground classes, and then classifies the foreground regions as
cars, pedestrians or other. In an alternative approach, Leibe et al.
suggested that the image segmentation and recognition are
intertwined processes, and top-down knowledge from object
recognition should guide the segmentation process [7]. Several
top-down algorithms have been proposed to improve figure-
ground segmentation of color images [7,5,8]. However, to avoid
segmentation errors, several object detection algorithms without
segmentation have been proposed, such as window scanning [9],
local contour features [10], and implicit shape model [11].

With recent advances in 3-D cameras, range images have been
used for object segmentation and recognition. Compared with
color images, range images are less sensitive to changes in the envi-
ronment illumination, object color or texture. Existing algorithms
for range image segmentation focus mainly on segmenting planar
surfaces or regular curved surfaces [12–17]. The principle of these
algorithms is to divide the image into closed regions with similar
surface functions. Harati et al. proposed an edge-based segmenta-
tion for range images [18]. In their algorithm, two bearing angle
(BA) images for vertical and horizontal directions are calculated
from range images, and the edges of BA images are detected using
the Sobel operator. Segmentation is achieved by labeling the com-
bined edge map. Coleman et al. proposed an edge detection method
using Laplacian operators for irregular range images [19]. The im-
proved Laplacian operators reduce noise in range images and
achieve a higher segmentation rate than the traditional Laplacian
operator. Markov random fields were also applied to range image
segmentation. For example, Wang and Wang proposed a range im-
age segmentation based on Bayes inference and Markov random
field modeling, and used the surface function parameters to group
distance pixels into planar regions [20]. Zhang et al. combined Mar-
kov random fields with graph cuts [21] to reduce over-segmenta-
tion for range images [22].

More recently, several algorithms have been proposed for ob-
ject detection and classification in 3-D images [23–29]. Eunyoung
and Medioni proposed a scalable framework for categorizing 3-D
objects [23]. After range image segmentation, the objects are clas-
sified using an online learning system, which is based on a hierar-
chical structured model reported in [30]. Das et al. proposed an
object detection and localization system based on both color and
range images for robots [24]. Their method first removes satura-
tion noise from range images, and then extracts the features of ob-
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jects using the singular value decomposition filter and pLSA model
[31]. The multi-level SVM classifier is used to categorize five ob-
jects. Fardi et al. presented a 3-D photonic mixer device for pedes-
trian detection [25]. This system first segments the image to create
reliable detections of objects in the image plane, and then uses ob-
ject distance and shape/motion features to detect the pedestrians.
Devarakota et al. used range images to classify vehicle occupants
(adults or children) and their actions (leaning forward or back-
ward) [26]. Their method was evaluated with several classifiers,
including linear-regression, Bayes quadratic, Gaussian mixture,
and polynomial classifiers. Rapus et al. proposed a pedestrian rec-
ognition system based on depth and intensity images [27]. In their
system, the ground plane from the depth image is extracted first;
an AdaBoost head-shoulder detector is then used to classify pedes-
trians. Mozos et al. suggested a multipart-based people detection
system from range data [28]. In their system, individual classifiers
are trained to detect different body parts, and their outputs are
combined to form the final detector. Spinello and Arras developed
a people detection system based on RGB-D data [29]. They pro-
posed using histogram of depths (HODs) to extract features from
range images, and used histogram of oriented gradients (HOGs)
to extract features from intensity images. The decisions from range
and intensity images are fused to form the final classification.
There are also several other approaches that have been proposed
for pedestrian detection in 2-D intensity images [32–34].

This paper presents a scene segmentation and pedestrian classi-
fication system that relies on 3-D range images and 2-D intensity
images to locate objects in the scene, determine their range and
velocity, and classify them into pedestrian and non-pedestrian ob-
jects. Recently, we proposed a pedestrian detection system based
on range images [35]. In this system, the local variation algorithm
[36] is used to segment range images, and the GIST features [37]
are used to classify pedestrian and non-pedestrian patterns. In this
paper, we extend the work presented in [35], by proposing a new
segmentation approach and new features for object classification,
and conducting more comprehensive experimental evaluation,
analysis and comparison with other state-of-the-art techniques.

The remainder of the paper is organized as follows. Section 2
presents the proposed object sensing system, including range im-
age segmentation, feature extraction, and object classification. Sec-
tion 3 analyzes the performance of the proposed segmentation and
classification methods, and compares them with existing state-of-
the-art techniques. Section 4 gives the concluding remarks.
2. Proposed segmentation and classification system

The proposed system for scene segmentation and pedestrian
classification using a range camera is shown in Fig. 1. The Swiss-
Ranger SR4000 camera produces range images (x, y, z), an intensity
image, and a confidence map (see Fig. 2). In the proposed system,
the input range image (z) is first segmented by analyzing the depth
histogram. Next, the mean-shift algorithm is applied to the 3-D
range data (x, y, z) to reduce under-segmentation. Then, the GIST
features and Fourier descriptors are extracted from range and
intensity images for classification of the segmented regions as a pe-
destrian or non-pedestrian.
Fig. 1. Block diagram of the proposed scene
Range images are typically very noisy, especially when captured
in an outdoor environment. To reduce the noise, several pre-pro-
cessing steps are applied before the range data are fed to the object
segmentation and classification system. Pixels with unreliable
depth values are removed by thresholding the confidence map,
and then removed by median filtering. Fig. 2f shows the result of
pre-processing the image in Fig. 2a.

2.1. Scene segmentation based on depth histogram

After pre-processing, the range image is segmented into sepa-
rate regions by analyzing the depth histogram. The image pixels
are partitioned into distinct distance layers using a set of thresh-
olds, which are determined adaptively as the local minima of the
range image histogram. The edge pixels in the range image are ex-
cluded during histogram-thresholding because pixels on region
boundaries have noisy depth measures.

Let h ¼ fh1;h2; . . . ; hBg be the depth image histogram with B
bins, where hj denotes the jth histogram bin. The first-order deriv-
ative is approximated as

dj ¼ hj � hj�1; for j ¼ 2;3; . . . ;B: ð1Þ

A local minimum is detected at point j if the first-order deriva-
tive changes sign from negative to positive:

dj 6 0 and djþ1 > 0: ð2Þ

After thresholding, connected component labeling is applied on
each distance layer to form regions. An example of histogram-
based segmentation is shown in Fig. 3. Histogram-based segmenta-
tion is very fast, but it relies only on thresholding the depth values,
which may lead to under-segmentation. This problem will be ad-
dressed in the next stage by applying the mean-shift algorithm
on the 3-D spatial points.

2.2. Mean-shift clustering of 3-D points

After histogram processing, the mean-shift algorithm is em-
ployed to analyze the 3-D points in each region. Consider a preli-
minary segmented region with n pixels. Let p1, p2, . . ., pn denote
the corresponding 3-D points, where pi ¼ ðxi; yi; ziÞ. The mean-shift
algorithm partitions the 3-D points into sub-regions via kernel
density estimation, where each sub-region corresponds to a den-
sity center cj. Suppose that cj is the current estimate of the center,
an updated estimate is calculated as

mðcjÞ ¼
Pn

i¼1Kðcj � piÞpiPn
i¼1Kðcj � piÞ

; ð3Þ

where Kð�Þ is a kernel function that controls the contribution of the
sample pi to the center. In our work, a flat kernel is used, which is
defined as follows:

KðvÞ ¼
1; if jjvjj 6 r;

0; otherwise;

�
ð4Þ

where r denotes the kernel radius. The difference between the up-
dated center and the current center fmðcjÞ � cjg is called the
mean-shift. Convergence to a center occurs when the mean-shift
is smaller than a threshold e�k

ffiffi
r
p

, where k is a positive constant.
Pedestrian or
non-pedestrian object

and location

segmentation and classification system.



Fig. 2. Example images captured by a 3-D camera SwissRanger SR4000: (a) range image (z dimension), (b) x dimension, (c) y dimension, (d) intensity image, (e) confidence
map (a high score indicates a reliable distance measure) and (f) output of preprocessing stage (z dimension) – thresholding of the confidence map followed by median
filtering.

(a) (b)

Fig. 3. Histogram-based segmentation: (a) histogram of the range image in Fig. 2f (the green lines are the detected local minima); (b) output of histogram-based
segmentation. In this example, the number of histogram bins is B = 32. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
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All 3-D points located within a radius r from the density center are
grouped into one sub-region.

To reduce computation cost and prevent over-segmentation,
the radius r is selected adaptively according to the area and stan-
dard deviation of each region. Let Ai be the area of the ith prelimin-
ary segmented region, and Amax be the largest area. The bandwidth
ri for the ith segmented region is defined as

ri ¼
saAi

riAmax
; ð5Þ

where ri is the standard deviation of the depth pixels in region i,
and sa is a positive parameter. Fig. 4 shows an example of 3-D
mean-shift clustering, where a preliminary segmented region is
partitioned into several sub-regions.

2.3. Ground segmentation and object localization

In range images, some object regions have the same depth val-
ues as the ground. To differentiate the ground region from other
objects, we process the normal vector u ¼ ðux;uy;uzÞ of 3-D sur-
faces. Consider the set of 3-D points ðxi; yi; ziÞ, where yi is the ver-
tical coordinate. The Delaunay triangulation is first applied on
the ðxi; ziÞ coordinates to generate horizontal triangulation sur-
faces. Let p1, p2, and p3 be the three vertices of an output triangle.
The normal vector of the triangulation surface is computed using
the cross product:

u ¼ ðp3 � p2Þ � ðp2 � p1Þ: ð6Þ

The normal vector at a given point is estimated by averaging the
normal vectors of all triangulation surfaces intersecting at that
point. A 3-D point is considered as a ground pixel if the y-compo-
nent of its unit normal vector exceeds a threshold sn. To increase
the processing speed, the normal vectors are calculated only for
the bottom-third region of the image, since the ground region is as-
sumed to appear on the lower part of the image. The ground detec-
tion is applied to separate the objects from the ground and
improve range image segmentation. Fig. 5 shows the ground detec-
tion for indoor and outdoor images. Note that for ground detection
to be accurate, the 3-D range camera should be approximately par-
allel to the ground.

To finalize segmentation, over-segmented regions are recovered
by merging adjacent regions that are separated by a weak edge.



Fig. 4. Example of mean-shift clustering: (a) a preliminary segmented region; (b) output of mean-shift clustering. The circles � denote the extracted density centers.
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The common boundary of two adjacent regions Ra and Rb is re-
moved if

L
minðLa; LbÞ

6 sl; ð7Þ

where L is the number of pixels along their common boundary, sl is
a threshold, and La and Lb are the perimeter lengths of the two re-
gions. Fig. 6 shows an example of edge merging.

After segmentation, the position p̂a ¼ ðx̂a; ŷa; ẑaÞ of the seg-
mented object Ra is calculated as

p̂a ¼
1
na

X
pi2Ra

pi; ð8Þ

where na is the number of pixels in the region. The velocity of an
object is estimated as the change in distance over time:

v̂a ¼ jjDp̂ajj=Dt; ð9Þ

where Dp̂a is the object displacement between two consecutive
range images. Fig. 7 shows some segmented objects and their loca-
tion in the scene.

2.4. Feature extraction

To classify the segmented regions, the Fourier and GIST features
from range and intensity images are combined. Fourier features
[38] represent the shape of the object, whereas, GIST features
[37] model the dominant spatial structure of the object. These
descriptors are introduced in the next two subsections.

2.4.1. Fourier descriptor
For each segmented region, the boundary of the object is ex-

tracted from the binary masks using morphological dilation. The
noise edge pixels are removed by finding the largest connected
component in the edge map, and tracing a close boundary of this
Fig. 5. Sample results of ground detection method. Left: input depth images; Right:
interpretation of the references to color in this figure legend, the reader is referred to th
component (clockwise direction, 8-connected labeling). The ith
pixel on the boundary is represented as a complex number
pi ¼ xi þ jyi, where xi and yi are the horizontal and vertical coordi-
nates of the pixel. The discrete Fourier transform (DFT) is applied
to the 1-D complex signal pi ði ¼ 0;1; . . . ;N � 1Þ to obtain the Fou-
rier coefficients:

Fk ¼
1
N

XN�1

i¼0

pie
�j2pk�i

N ; k ¼ 0;1; . . . ;N � 1: ð10Þ

The Fourier coefficients of low frequencies represent the gen-
eral shape of the object, whereas the Fourier coefficients of high
frequencies represent finer details about the object shape [38].
Let Fmax be the maximum magnitude of all Fourier coefficients,
Fmax ¼ maxðjFkjÞ; k ¼ 1;2; . . . ;N � 1. The DC Fourier coefficient F0

is removed, and the remaining Fourier coefficients are normalized
to form a Fourier descriptor as

f ¼ ½jF1j; jF2j; . . . ; jFN�1j�T

Fmax
; ð11Þ

This Fourier descriptor has been shown to be relatively invari-
ant to translation, scale, and rotation [38].
2.4.2. GIST descriptor
The GIST descriptor is a holistic and low-dimensional represen-

tation of images. It have been shown to be invariant to scale, orien-
tation, and aspect ratio of objects [37]. For each segmented region,
the GIST descriptor is applied to the corresponding rectangular re-
gions in the range and intensity images.

Consider an image region I (range or intensity). First, the region
is padded, whitened, and normalized to reduce the blocking arti-
fact. Next, a set of multi-scale oriented Gabor filters are generated
from one mother wavelet, through dilation and rotation. The im-
outputs. The detected walkable regions are highlighted in dark red color. (For
e web version of this article.)



Fig. 6. An illustration of the proposed range image segmentation: (a) input range image, (b) after histogram thresholding and mean-shift segmentation and (c) after edge
merging. In this example, the over-segmented surfaces on the right hand side of the person are recovered.

Fig. 7. Sample results of the proposed segmentation method. Left: input depth images. Right: outputs with calculated 3-D position in meter. See electronic color figure. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

78 X. Wei et al. / J. Vis. Commun. Image R. 25 (2014) 74–85
pulse response of a Gabor filter is the product of a harmonic and a
Gaussian function:

gðx; yÞ ¼ cosð2p x0

k
þUÞ exp

x02 þ c2y02

2r2

� �
; ð12Þ

where x0 ¼ x cos hþ y sin h; y0 ¼ �x sin hþ y cos h, h is the rotation
angle, U is the phase offset, k is the wavelength of the sinusoidal
component, r is the parameter of the Gaussian function, and c is
the spatial aspect ratio of the harmonic function. The Gabor filters
gk;‘ with four scales (k = 1, . . . , 4) and eight orientations
ðh‘ ¼ p‘

8 ; ‘ ¼ 0; . . . ;7Þ are applied to the region I:

Ok;‘ ¼ I � gk;‘; ð13Þ

where � is the convolution operator. The output of each filter is par-
titioned into 16 blocks. For each block, the average value is
calculated:

Ok;‘ ¼
1

W � H

XW
x¼1

XH

y¼1

jOk;‘ðx; yÞj: ð14Þ

Therefore, each filter produces 16 features. The features pro-
duced by all 4� 8 Gabor filters are concatenated into a single fea-
ture vector.

2.5. Object classification

The proposed pedestrian detection system uses a feature vector
consisting of 512 GIST features from the range region, 512 GIST
features from the intensity region, and 100 Fourier descriptors
from the object boundary. A support vector machine (SVM) classi-
fier with the radial basis function (RBF) kernel is used to categorize
pedestrian and non-pedestrian objects. The RBF kernel is given by

Kðf i; f jÞ ¼ expf�cjjf i � f jjj2g; ð15Þ

where f i and f j are two feature vectors, and c is a positive scalar.
3. Experiments and results

The proposed segmentation and classification methods were
evaluated on a dataset of range and intensity images captured by
a MESA Imaging time-of-flight (TOF) camera. Section 3.1 describes
the MESA image dataset and the performance measures used to as-
sess the effectiveness of the proposed algorithms. Section 3.2 ana-
lyzes the effects of the various parameters on the performance of
the algorithm, whereas Section 3.3 evaluates the effectiveness of
each step in the proposed segmentation algorithm. Section 3.4
compares the proposed segmentation algorithm with existing
algorithms. Section 3.5 evaluates the performance of the proposed
pedestrian classification algorithm on two data sets: the MESA
dataset and the RGB-D public dataset.

3.1. Experimental methods

A dataset was acquired using a TOF camera produced by MESA
Imaging (model SwissRanger SR4000). For each pixel, the Swiss-



Table 1
MESA range image dataset for segmentation and classification.

Image set No. of images

Range images 1000
Intensity images 1000
Segmentation ground-truth 220
Classification ground-truth 2000
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Ranger camera produces five outputs: ðx; y; zÞ coordinates, inten-
sity, and the confidence score. The camera operates at a speed of
30 frames per second, with a frame size of 144� 176 pixels. The
depth field of the camera extends from 0.5 m to 7.9 m. The images
were taken for different indoor and outdoor scenes, on different
days, and under various lighting conditions. Samples of the range
and intensity image pairs are shown in Fig. 8.

Overall, 2000 images were extracted from a set of 50 videos,
involving 20 different people performing different activities (walk-
ing, running, or standing). Each video sequence was subsampled,
and only 20 frames with different background scenes were se-
lected. A summary of the MESA dataset is given in Table 1. For seg-
mentation, 220 images were segmented manually to generate the
ground-truth. Twenty randomly selected images were used to
determine suitable segmentation parameters; the remaining 200
range images were used for segmentation evaluation and compar-
ison with other algorithms. For classification, a set of 2000 images
(range and intensity) with labeled pedestrians was collected.
Examples of the ground-truth for segmentation and pedestrian
classification are shown in Fig. 9.

The segmentation performance was evaluated using several
measures: correct segmentation rate, false segmentation rate,
and weighted Jaccard coefficient. Consider an image with M ma-
chine segmented regions and G ground-truth regions. The Jaccard
similarity coefficient between a machine segmented region Rm

and a ground-truth region Rg is defined as

JðRm;RgÞ ¼
jRm \ Rg j
jRm [ Rg j

: ð16Þ

The segmentation quality was also measured by the weighted
Jaccard coefficient Jw, which takes into account the region size:

Jw ¼
PG

i¼1Ji � AiPG
i¼1Ai

; ð17Þ
Fig. 8. Sample range and intensity images from the MESA dataset.
where Ai is the area of the ith ground-truth region.
In our experiments, region Rm was considered to be correctly

segmented if the weighted Jaccard coefficient Jw is higher than
0.4. The correct segmentation rate Pc is defined as the percentage
of ground-truth regions that are correctly segmented. The false
segmentation rate Pf is defined as the percentage of machine-gen-
erated regions that are incorrectly segmented.
3.2. Selection of segmentation parameters

We first conducted experiments on a set of 20 training images
to determine suitable parameters for the proposed segmentation
algorithm. The segmentation accuracy was evaluated for different
values of histogram size B, ranging from 16 to 128. Fig. 10 shows
the segmentation outputs on a sample training image. For small
B (e.g. B = 16), there is significant under-segmentation, whereas
for large B (B = 64 or B = 128), there is significant over-segmenta-
tion. When B = 32, the segmentation output (Fig. 10d) resembles
most the ground-truth (Fig. 10b). The weighted Jaccard coefficients
for different histogram sizes, averaged over the 20 training images,
are given in Table 2. The largest weighted Jaccard coefficient is
75.1%, obtained when B = 32. Therefore, a histogram size of 32 bins
is selected for the remainder of the experiments.

The segmentation performance on the 20 training images was
also evaluated for different values of the segmentation parameters
Left columns: range images; Right columns: intensity images.



Fig. 9. Ground-truth data: (a) a range image; (b) segmentation ground-truth; (c) labeled pedestrian region.

Table 2
The average weighted Jaccard coefficients for different histogram sizes B, on the 20
training images.

B 8 16 32 64 128

Jw (%) 67.7 72.6 75.1 73.9 70.6
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sa; sn, and sl. Parameter sa is used in mean-shift clustering, sn is
used in ground segmentation, and sl is used in post-processing
(see Section 2). Fig. 11 shows the weighted Jaccard coefficient Jw

and the correct segmentation rate Pc as functions of sa; sn, and sl.
Based on these results, the following parameter values are selected
for the proposed segmentation algorithm: sa ¼ 0:09; sn ¼ 0:2, and
sl ¼ 0:3.
3.3. Analysis of the proposed segmentation algorithm

Experiments were conducted on the 200 test images to evaluate
the effects of individual processing stages on the proposed seg-
mentation algorithm. There are four main stages: pre-processing,
histogram-based segmentation, mean-shift clustering, and post-
processing. Table 3 presents the segmentation performance of
different processing stages; the 95% confidence intervals are also
shown. With only histogram thresholding, the correct segmenta-
tion rate is 58.9%. The median filter increases the correct segmen-
tation rate to 63.2%. Applying ground detection, confidence map
thresholding, and boundary removal increases the correct segmen-
tation rate to 59.3%, 64.2%, and 66.6%, respectively. After all the
pre-processing steps for the 3-D range images, the correct segmen-
tation rate increases to 73.0%. Adding a post-processing step (edge-
merging) increases the correct segmentation rate to 80.7%. By
including mean-shift clustering, the final segmentation rate
increases to 83.2%. These results indicate that combining four extra
Fig. 10. Visual results of segmentatio
proposed processing stages improves the segmentation perfor-
mance significantly.

In the proposed algorithm, mean-shift clustering was applied
only to the 3-D data, i.e., pi ¼ ðxi; yi; ziÞ. We also evaluated the seg-
mentation performance when mean-shift clustering was applied to
the combination of 3-D and intensity data, i.e., pi ¼ ðxi; yx; zi; IiÞ. For
this approach, the final segmentation rate drops to 75.3%, false seg-
mentation increases to 36.2%, and the weighted Jaccard coefficient
drops to 66.7%. Furthermore, the average processing time increases
to 2.0 s. Therefore, we can conclude that the combination of range
and intensity data in mean-shift clustering does not improve seg-
mentation performance. A possible reason is that adding intensity
causes the objects to be over-segmented into several smaller
regions.
3.4. Comparison with existing segmentation algorithms

Using the set of 200 test images, the proposed segmentation
algorithm was compared with several state-of-the-art methods:
n for different histogram size B.
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Fig. 11. Segmentation performances on a training set of 20 images for different values of segmentation parameters sa , sn , and sl . Pc is the correct segmentation rate, and Jw is
the weighted Jaccard coefficient. The green lines indicate the selected parameter values. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

Table 3
Segmentation performances with confidence intervals of the proposed method with different processing steps.

Algorithm Correct segmentation rate (%) False segmentation rate (%) Weighted Jaccard (%) Processing time (s)

Histogram thresholding only 58.9 ± 2.4 40.2 ± 2.4 54.0 ± 2.4 0.3
+ 2-D median filtering 63.2 ± 2.3 39.8 ± 2.4 54.4 ± 2.4 0.1
+ Ground detection 68.1 ± 2.2 36.8 ± 2.3 58.0 ± 2.4 0.4
+ Confidence map thresholding 59.3 ± 2.4 44.8 ± 2.4 54.0 ± 2.4 0.1
+ Boundary removal 66.6 ± 2.3 42.7 ± 2.4 58.5 ± 2.4 0.1
Histogram thresholding + all pre-processing steps 73.0 ± 2.1 36.9 ± 2.3 62.7 ± 2.3 1.0
+ Edge merging 80.7 ± 1.9 35.1 ± 2.3 66.2 ± 2.3 0.3
+ Mean-shift and edge merging 83.2 ± 1.8 34.9 ± 2.3 69.5 ± 2.2 1.8

Table 4
Segmentation performances with confidence intervals of six methods evaluated on the MESA dataset.

Correct segmentation rate (%) False segmentation rate (%) Weighted Jaccard (%) Processing time (s)

Markov random fields [43] 60.1 ± 2.4 36.8 ± 2.3 58.6 ± 2.4 30.0
Local variation [39] 63.0 ± 2.3 28.6 ± 2.2 64.5 ± 2.3 3.4
Graph cuts [21] 57.1 ± 2.4 39.2 ± 2.3 56.4 ± 2.4 0.5
K-means 56.9 ± 2.3 35.7 ± 2.4 60.3 ± 2.4 0.4
Bearing angles [18] 71.5 ± 2.2 32.2 ± 2.2 63.8 ± 2.3 0.1
Proposed method 83.2 ± 1.8 34.9 ± 2.3 69.5 ± 2.2 1.8
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local variation [39], graph cuts [21], K-means, Markov random
fields [40], and bearing angle (BA) with edge detection [18]. The
same pre-processing and post-processing steps were applied to
all methods. The same set of 20 training images was used to deter-
mine suitable parameters of each segmentation method. In the fol-
lowing, the implementation details of the various segmentation
methods are presented.

Local variation (LV) is a graph-based segmentation method. It
merges two components if the external variation is small relative
to the internal variation. Our implementation of LV was based on
the code of Felzenszwalb and Huttenlocher [39] and Su [41]. The
three parameters in LV were smoothness parameter h of Gaussian
filter, minimum size of the segmentation component s, and radius
of nearest neighborhood k. The parameters determined using the
20 training images are h ¼ 0:8, s ¼ 300 and k ¼ 10.

Graph cuts is a segmentation algorithm based on energy mini-
mization. Boykov et al. proposed two graph cuts algorithms,
namely swap and expansion [21]. The expansion algorithm with
10 clusters per image was used in our experiment. The implemen-
tation of graph cuts was based on the code of Bagon [42].

K-means is a cluster-based segmentation algorithm that is
widely used in color image segmentation. Based on the training
images, the cluster number K was set to 10 in our experiment.
Markov random fields have been used for segmenting 3-D
images in [20,22,43]. In our experiment, the histogram-threshold-
ing was used to provide an initial segmentation, which was then
used as the input to the iterated conditional modes (ICMs) algo-
rithm to estimate the MAP solution. The MRF method was imple-
mented based on the MATLAB toolbox provided by Demirkaya
et al. [43]. In our experiment, the number of classes was initialized
to 15, the number of iteration was set to 10, and parameter b for
the Gibbs energy function was set to 1.5.

Bearing angles with edge detection was proposed for indoor 3-D
simultaneous localization and mapping (3D-SLAM) [18]. In this
method, range images were first transformed to BA images in ver-
tical and horizontal directions. The edges of the two BA images
were detected by the Sobel edge detector, with threshold
sBA ¼ 0:3. The final edge map was obtained using logical OR oper-
ator applied to the edge images. After edge detection, a median fil-
ter of size 3� 3 was used to remove noise, and connected
component labeling was applied to obtain the final segmentation.

Table 4 summarizes the segmentation results of different meth-
ods in terms of correct segmentation rate Pc , false segmentation
rate Pf , weighted Jaccard coefficient Jw, and processing time. Com-
pared to the other methods, the proposed method has a higher cor-
rect segmentation rate, a higher weighted Jaccard coefficient, and a



Fig. 12. Range image segmentation using six different segmentation algorithms on a test image.

Table 5
Segmentation performance on MESA dataset according to the evaluation framework in [44] with sh ¼ 0:6.

Algorithms Correct segmentation rate
(%)

Over segmentation rate
(%)

Under segmentation rate
(%)

Missed segmentation rate
(%)

Noise segmentation rate
(%)

Graph cut [21] 33.3 ± 2.3 33.7 ± 2.3 65.6 ± 2.3 14.2 ± 1.7 11.8 ± 1.6
K-means 34.2 ± 2.3 49.3 ± 2.4 47.1 ± 2.4 9.3 ± 1.4 25.8 ± 2.1
Local variation [39] 42.7 ± 2.4 46.9 ± 2.4 55.4 ± 2.4 5.5 ± 1.1 16.1 ± 1.8
Markov random fields

[43]
38.0 ± 2.3 65.6 ± 2.3 38.2 ± 2.3 5.2 ± 1.1 22.9 ± 2.0

Bearing angles [18] 48.5 ± 2.4 24.0 ± 2.1 71.1 ± 2.2 15.4 ± 1.7 9.8 ± 1.4
Proposed method 63.0 ± 2.3 35.0 ± 2.3 61.6 ± 2.3 25.0 ± 2.1 3.4 ± 0.9

Table 6
Classification rates of pedestrian versus non-pedestrian classification on the MESA
dataset.

Algorithms CR for only
range
images (%)

CR for only
intensity
images (%)

CR for both
range/intensity
images (%)

Processing
time (s)

HOG–HOD
[9,29]

93.7 ± 0.7 88.6 ± 0.9 95.4 ± 0.6 0.06

SIFT–SPM
[45,46]

93.2 ± 0.7 93.5 ± 0.7 96.2 ± 0.6 0.40

GIST
[37,35]

97.5 ± 0.4 97.2 ± 0.5 98.2 ± 0.4 0.30

Proposed
method

97.7 ± 0.4 97.2 ± 0.5 98.6 ± 0.3 0.32
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lower false segmentation rate. The segmentation results of the six
algorithms on a test image are shown in Fig. 12.
All segmentation algorithms were also compared based on the
evaluation framework proposed by Hoover et al. [44]. In this
evaluation framework, a machine-generated region Rm is consid-
ered correctly-segmented with a tolerance rate sh if the ratio
jRm \ Rg j=maxðjRmj; jRg jÞ is greater than or equal to sh. Here,
jRm \ Rg j is the area of the overlap between the machine-generated
region Rm and the ground-truth region Rg . The correct segmenta-
tion rate of an algorithm is defined as the percentage of ma-
chine-generated regions that are correctly segmented. Note that
a machine-generated region is considered under-segmented if it
consists of multiple ground-truth regions. A machine-generated
region is considered over-segmented if it is smaller than the corre-
sponding ground-truth region. A region is considered as a missed
segmentation when a segmenter fails to find a region which
appears in the image (false negative). A region is considered a noise
segmentation if the segmenter finds a region which does not exist
in the ground-truth image (false positive).



Fig. 13. Sample results of the proposed pedestrian classification. The red numbers are the positions in meters from the pedestrians. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

Table 7
Classification rates of pedestrian versus non-pedestrian classification on the RGB-D
dataset.

Algorithms Feature-level Fusion (%) Decision-level Fusion (%)

HOG–HOD [9,29] 97.4 ± 0.5 95.0 ± 0.6
SIFT–SPM [45,46] 97.8 ± 0.3 97.4 ± 0.5
GIST [37,35] 98.6 ± 0.3 98.8 ± 0.3
Proposed method 98.4 ± 0.4 99.0 ± 0.3
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Table 5 summarizes the segmentation results of different meth-
ods in terms of correct segmentation rate, over segmentation rate,
under segmentation rate, and false segmentation rate. Compared
with the other five algorithms, the proposed algorithm achieves
the highest correct segmentation rate.
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Fig. 14. Precision recall curves of HOG–HOD, SIFT–SPM, GIST, and the proposed
method on the RGB-D dataset.
3.5. Pedestrian classification

In this section, the proposed pedestrian classification algorithm
based on range and intensity images was evaluated on a dataset
comprising 1000 pedestrian and 1000 non-pedestrian patterns.
The background was varied to include both indoor and outdoor
scenes. The Fourier and GIST features were extracted from range
and intensity regions as described in Sections 2.4.1 and 2.4.2. The
classification rate was measured using fivefold cross validation.
For each validation fold, four subsets were used for training, and
the remaining subset is used for testing. This was repeated 5 times
(each time using a different test subset); the classification rate was
the percentage of test patterns that are correctly classified over the
five folds. The confidence interval of the classification rate was also
computed. For comparison, three other state-of-the-art feature
extractors (HOG–HOD [9,29], SIFT–SPM [45,46], and GIST [37,35])
were evaluated on the MESA dataset. We also evaluated the perfor-
mances of feature vectors that are extracted separately from range
images and from intensity images.
Table 6 shows the classification performances of different fea-
ture extractors. The HOG–HOD descriptor has a classification rate
of 95.4%. The histogram of orientations does not perform well for
low-resolution range and intensity images. In extracting the
HOG–HOD features, all segmented regions are reshaped to a fixed
aspect ratio, which increases the false classification rate. The SIFT–
SPM descriptor has a classification rate of 96.2%. This descriptor is
suitable for recognizing objects based on texture [45,46]. However,
object texture is not very dominant in range images. Similarly to
the HOG–HOD, the SIFT–SPM requires regions to be reshaped to
a fixed aspect ratio. The GIST descriptor achieves a classification
rate of 98.2%. It performs better than the HOG–HOD and SIFT–
SPM across different image modalities (range only, intensity only,



Fig. 15. Multiple-pedestrian detection using the proposed algorithm on the RGB-D dataset. Top row: color/intensity images. Bottom row: range images. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)
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or combined range and intensity). The GIST descriptor is suitable
for extracting global features of objects, especially from noisy
low-resolution images. Furthermore, it is not sensitive to the as-
pect ratio of the object.

Finally, the proposed method, which combines GIST and Fourier
descriptors, yields the highest classification rate of 98.6%. A possi-
ble reason is that the GIST method extracts global texture informa-
tion in range and intensity images, whereas the Fourier descriptor
enhances boundary features of the objects. Combining global and
shape features improves the classification accuracy. Sample results
of the pedestrian classification are shown in Fig. 13.

The proposed method was also compared with HOG–HOD,
SIFT–SPM and GIST on the RGB-D people dataset [29]. This dataset
was extracted from 3 movie sequences. It contains 1035 pedestrian
and 1035 non-pedestrian patterns. The classification rate was mea-
sured using fivefold cross validation.

Table 7 shows the classification rates on RGB-D dataset. For
each of the four methods (HOG–HOD, SIFT–SPM, GIST, and the pro-
posed algorithm), two fusion approaches were evaluated: (i) fusion
at the sensory level (feature-level); and (ii) fusion at the classifier
level (decision-level). For feature-level fusion, a feature vector that
combines all imaging modalities (range and intensity) is extracted,
and a single SVM classifier is trained.

For decision-level fusion, one SVM classifier is trained based on
the feature vector extracted from each imaging modality (range or
intensity). The final classification is determined by fusing the deci-
sions of several SVM classifiers. In this approach, the two SVM clas-
sifiers for range and intensity images are fused as follows [29]:

p ¼ ð1� kÞpr þ kpi; ð18Þ

where p is the resultant probability of detecting a pedestrian, and pi

and pr are the probabilities of detection obtained from the
intensity-image and range-image classifiers, respectively. The value
of k in (18) is determined as k ¼ 1=ð1þ h2Þ, where h ¼ Fr=Fi. Here, Fr

and Fi are the false negative rate of the range-image classifier and
the intensity-image classifier, respectively.

For HOG–HOD and SIFT–SPM features, using decision-level fu-
sion does not improve the classification rate compared to fea-
ture-level fusion. For both the GIST descriptor and the proposed
method, the decision-level fusion yields higher classification rates
than the feature-level fusion. For the feature-level fusion approach,
the GIST and the proposed method achieve higher classification
rates than the HOG–HOD and SIFT–SPM methods. For the deci-
sion-level fusion approach, the proposed method has a higher clas-
sification rate than the HOG–HOD, SIFT–SPM, and GIST methods.
The precision and recall curves of the compared algorithms in deci-
sion-level fusion are shown in Fig. 14. The equal error rates for
HOG–HOD, SIFT–SPM, GIST, and the proposed method are 86.7%,
90.0%, 93.3%, and 96.7% respectively. Fig. 15 shows some pedes-
trian detection results obtained with the proposed method.
4. Conclusion

In this paper, a new approach for segmenting and classifying
objects using a 3-D time-of-flight range camera was presented.
An image segmentation approach was proposed that reduces seg-
mentation errors by combining histogram processing, mean-shift
clustering, edge merging, and ground normal vector thresholding.
The segmented objects are classified into pedestrian and non-pe-
destrian patterns by combining Fourier descriptors and GIST fea-
tures extracted from range and intensity images. The proposed
segmentation and pedestrian classification algorithms were evalu-
ated on 3-D range data, and compared with existing state-of-the-
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art methods. Experimental results show that the proposed meth-
ods are more effective in segmenting 3-D scenes and classifying
pedestrians from non-pedestrian objects.
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