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Abstract: In recent years, Doppler radar has been used as a sensing modality for human gait recognition, due to its ability
to operate in adverse weather and penetrate opaque obstacles. Doppler radar captures not only the speed of the target,
but also the micro-motions of its moving parts. These micro-motions induce frequency modulations that can be used to
characterise the target movements. However, a major challenge in Doppler signal processing is to extract discriminative
features from the radar returns for target classification. This study presents a feature extraction method for classification of
humanmotions from the micro-Doppler radar signal. The proposed method applies the log-Gabor filters at multiple spatial
frequencies and orientations on a joint time–frequency representation. To achieve invariance to the target speed, features
are extracted from local patches along the torso Doppler shift. Then, the (2D)2PCA (two-directional two-dimensional
principal component analysis) method is applied to create a compact feature vector. Experimental results based on real
radar data obtained from multiple human subjects demonstrate the effectiveness of the proposed approach in
classifying arm motions.
1 Introduction

With the advances in radar technology, there is an increasing interest
in using Doppler radar for human gait recognition and activity
monitoring. A modern Doppler radar detects not only the velocity
of a target but also the local dynamics of its moving parts. The
micro-movements induce frequency modulations around the main
Doppler shift are commonly known as micro-Doppler (μ-D)
effects. Several studies have been conducted to analyse μ-D
signatures of moving targets [1–5]. An early study on μ-D effects
investigated the jet engine modulation of radar returns for target
identification [1]. Later, Chen et al. developed mathematical
models and performed simulations to analyse μ-D effects of targets
under translation, rotation, and vibration [2]. Other researchers
conducted numerical simulations and real experiments, which
demonstrated that the μ-D signature represents the kinetic motions
of an object and provides a viable means for object identification
[3–5]. μ-D signals have been used for classifying rigid targets,
such as helicopters and aircrafts [6], and wheel and track vehicles
[7]. They have also been used to differentiate rigid and non-rigid
targets, for example, humans and vehicles [8–10]. In recent years,
the research on μ-D signals has been focused on analysing human
movements [11–21]. In these applications, one common challenge
is to extract discriminative features from the radar returns for
classification.

In this paper, we propose a μ-D feature extraction method for
classifying human movements. First, the μ-D radar signature is
obtained using time–frequency (T–F ) analysis. Then,
two-dimensional (2D) filters are applied on the T–F representation.
Since the μ-D modulations induced by the arm and leg motions
appear close to the main Doppler frequency, a local T–F patch
centred on the torso frequency shift is located for feature
extraction. This step makes the proposed method stable against
variations in the target speed. Then, log-Gabor filters are used to
extract features from the T–F patch. This type of filters has neither
DC component nor bandwidth limitation. Therefore, a small set of
filters is adequate to cover the desired frequency spectrum. The
rest of the paper is organised as follows. Section 2 presents a brief
description of the μ-D signal and the related work on human μ-D
radar signature classification. Section 3 describes the proposed
feature extraction method. Section 4 presents the experimental
results, and finally, Section 5 gives the concluding remarks.
2 Related work

In this section, a brief description of μ-D radar signal is given in
Section 2.1, followed by a review of existing μ-D radar signature
classification approaches in Section 2.2. Then, three T–F analysis
techniques used to depict μ-D radar signature are presented in
Section 2.3.
2.1 μ-D radar signal

When a radar signal is backscattered from a target moving at a
constant radial velocity, the carrier frequency of the radar signal is
shifted according to the target velocity. If the target is a point
scatterer, the received signal can be expressed as

x(t) = A(t) exp {jfd(t)}, (1)

where A(t) is the time-varying amplitude and fd(t) is the
instantaneous Doppler phase [11]. Let l be the transmitted signal
wavelength and v(t) be the target velocity. The instantaneous
Doppler phase is given by

fd(t) =
4p

l

∫t
0
v(t) dt. (2)

A complex target such as a human can be represented as a set of
point scatterers. For example, Bilik and Tabrikian [11] modelled a
human body as a set of K segments; each segment moves at its
own velocity and has M points. The signal received by the antenna
can be written as

x(t) =
∑K
k=1

∑M
m=1

Ak,m(t)e
j(4plk,m/l)

�t
0
b̂ k (t) cosbk (t) dt, (3)
1



where Ak,m is the amplitude for the mth point-target on the kth
segment, βk(t) is the instantaneous angle from the zenith of the
segment, b̂k (t) is the instantaneous angular velocity, and lk,m is the
distance of the mth point along the segment. In practice, the
human locomotion is much more complex than the model given in
(3). Therefore, advanced modelling tools, for example,
electromagnetic wave scattering model, have been employed to
simulate the μ-D signals exhibited by different parts of a moving
person [22].
2.2 Existing μ-D classification approaches for human
motions

The various μ-D classification approaches require first the extraction
of salient features from the radar signal. The features are calculated
from the time, frequency, or joint T–F domain. In the time domain,
Fairchild and Narayanan [12] employed the empirical mode
decomposition (EMD) algorithm to decompose the radar signal
into a set of intrinsic mode functions (IMFs) and computed the
IMF energies as features. In the frequency domain, Bilik and
Khomchuk [13] applied speech and audio processing techniques to
extract three types of features: real cepstrum, linear predictive
coding coefficients, and Mel-frequency cepstrum coefficients
(MFCC). Molchanov et al. [14] computed discrete cosine
transform features from μ-D signals for target classification. In the
joint T–F domain, Kim and Ling [15] defined six features from
the spectrogram of a moving person: (i) the torso Doppler
frequency, (ii) the total bandwidth of the Doppler signal, (iii) the
offset of the total Doppler, (iv) the bandwidth without μ-D, (v) the
normalised standard deviation of the Doppler signal strength, and
(vi) the period of the limb motion. Orovic et al. [16] applied the
Hermite S-method to convert the radar signal into a T–F
representation and developed an envelope detection method to
capture the evolution of the arm swing. Mobasseri and Amin [17]
extracted features from the spectrogram by applying principal
component analysis (PCA). Li et al. [18] employed the
matrix-based PCA technique on spectrogram to classify different
arm motions of a walking person. Bjorklund et al. [19] computed
the cadence velocity diagram (CVD) and extracted the cadence
frequencies and velocity profiles as μ-D features. Tivive et al. [20]
proposed a machine learning method to extract μ-D features from
the spectrogram. Groot et al. [21] proposed to use particle filters to
differentiate walking from running motions and estimate the
person’s height from the spectrogram. Given the importance of
converting the μ-D signal into a joint T–F representation for
classification, the next section describes three T–F analysis methods.
2.3 T–F representations

We review three main T–F analysis representations for depicting μ-D
radar signature: the short-time Fourier transform (STFT), the pseudo
Wigner–Ville distribution (PWD), and the S-method. Consider a
time-domain signal x(t). The STFT of the signal is given by

X (t, v) =
∫1
−1

x(t + t)w(t)e−jvt dt, (4)

where w(t) is a time window. The spectrogram (SP) is the squared
magnitude of the STFT

XSP(t, v) = |X (t, v)|2. (5)

The STFT has a simple implementation, but it generally provides a
low resolution. In comparison, the PWD produces a high-resolution
T–F representation, and is related to the STFT as

XPWD(t, v) =
1

p

∫1
−1

X (t, v+ u)X ∗(t, v− u) du. (6)
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However, the PWD produces cross-terms which may cause
difficulties in interpreting the T–F distribution.

By contrast, the S-method achieves similar auto-term
concentration, but it does not suffer from the cross-terms. The T–F
distribution of the S-method (SM) is given by

XSM(t, v) =
1

p

∫1
−1

Q(u)X (t, v+ u)X ∗(t, v− u) du, (7)

where Q(θ) is a finite frequency domain window. The S-method
behaves as the STFT when Q(θ) = πδ(θ), and as the PWD when
Q(θ) = 1. The discrete form of the S-method can be written as
follows

XSM(n, k) =
∑N/2

i=−N/2

Q(i)X (n, k + i)X ∗(n, k − i), (8)

where n is the discrete time index, k is the discrete frequency index,
and N is the number of frequency samples. For a rectangular
window, that is, Q(i) = 1 for |i|≤ J and zero otherwise, the
S-method with J terms can be written as

XSM(n, k) =
∑J
i=−J

X (n, k + i)X ∗(n, k − i). (9)

The parameter J is usually set to a small value (J∈ [3, 10]) since
most of the auto-term energy is located around the maximum
value of the auto-term [23].

As an illustration, the above three T–F analysis techniques are
applied to a μ-D signal; the respective T–F representations are
shown in Fig. 1. The Doppler frequency shift induced by the torso
is around 200 Hz. The main peak represents the leg swing.
Although the PWD generates a high-resolution T–F representation,
shown in Fig. 1b, it is hard to discern the μ-D modulations, not to
mention the cross-terms. Therefore, in this paper only the STFT and
S-methodwill be investigated to generate the jointT–F representation.
3 μ-D feature extraction

In this section, we describe the proposed approach for signal
classification using μ-D radar signatures. Fig. 2 shows the main
steps of the feature extraction, followed by the classification step.
After the T–F analysis, the μ-D radar signature is converted into a
low-dimensional feature vector by using log-Gabor filters and a
dimensionality reduction technique.

3.1 T–F patch and contrast enhancement

When a person is walking, the μ-D modulations induced by the arm
and leg motions occur mainly around the human torso frequency.
Therefore, we extract local patches centred on the torso frequency
instead of the entire T–F representation. This strategy improves
invariance to translational speed of the target. The torso frequency
can be easily determined by locating the main peak in the
frequency profile. From the joint T–F representation X(n, k), the
frequency profile can be expressed as

Fp(k) =
∑M
n=1

X (n, k), (10)

where M is the number of time samples. The frequency profile is
passed to a median filter and then normalised by dividing by the
maximum value to obtain F̃p(k). The location of the torso
frequency is computed as

kt = argmax
k

F̃p(k). (11)
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Fig. 1 T–F representations (logarithmic scale) for a μ-D signal of a person walking towards the radar with both arms swinging

a STFT
b PWD
c S-method
The patch height is determined relative to the height of the main
peak, whereas the patch width is determined based on the task at
hand; here, it is chosen so as to maximise the classification rate
(CR) on individual patches. Assuming the person is inducing
positive μ-D modulations, the height of the main peak is estimated
by finding the smallest frequency index ko that satisfies the
following condition

∑ko
k=kt

F̃p(k)∑N/2
k=kt

F̃p(k)
≥ h. (12)

where N is the number of frequency samples and η is a fixed
threshold (0 < η < 1). The threshold η is chosen based on the T–F
representation noise level. When the T–F representation is noisy,
the threshold is set to a low value and vice versa. In this paper, it
is set to 0.99. The vertical span of the patch is given by the
frequency interval [kt− ko, kt + ko]. Since different individuals
swing their legs at different speeds, the patch height is fixed to a
predefined value Ny through down-sampling or up-sampling
operation on the columns of the patch.

The patch width is determined by the length of the input signal
and the length and the step of the window in the T–F
representation. Furthermore, the patch is aligned with respect to
the main peak. Let Ti denote the time of the ith main peak, ΔT
denote the time duration between two consecutive main peaks, and
Nx be the length of the input signal in samples. The horizontal
span of the patch is given by the time interval [Ti + ΔT/2, Ti + ΔT/
2 +Nx− 1].

Next, contrast enhancement is performed on the patch. We use the
Naka–Rushton equation [24] because it not only enhances the weak
μ-D amplitudes but also suppresses the small amplitudes, which
usually represent noise. Furthermore, it constrains the input to
the range [0, 1), facilitating the subsequent feature extraction. Let
W(i, j) denote the patch containing the absolute value of the T–F
Fig. 2 Schematic diagram of the proposed μ-D feature extraction method
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representation, where i∈ [1, Ny] and j∈ [1, Nx]. The
contrast-enhanced patch is computed as

W̃ (i, j) = W (i, j)r

W (i, j)r + mr
, (13)

where μ is the mean value of the patch. In this paper, the parameter r
is set to 1 (r = 1). Fig. 3 presents the patches extracted from the
spectrogram that are contrast-enhanced by the logarithmic scale
and Naka–Rushton equation. The difference between Figs. 3b and
c shows that the Naka–Rushton equation is better than the
logarithmic scale at enhancing weak μ-D modulations and
suppressing clutter.
3.2 Log-Gabor filtering

Log-Gabor filters, which were proposed by Field [25], are used to
analyse the pre-processed T–F patch. A log-Gabor filter has
similar shape to a Gabor filter on the logarithmic frequency scale
with an extended tail in the high-frequency region. Due to the
singularity at the origin, a log-Gabor filter is designed in the
frequency domain and is computed as

Gk,l( f , u) = exp − [ ln ( f / fk )]
2

2[ ln (b)]2

{ }
exp − (u− ul)

2

2s2
u

{ }
,

k = 1, . . . , Nf , l = 1, . . . , Nu,

(14)

where fk is the kth centre frequency of the filter, θl is the lth
orientation angle, Nf is the number of scales, Nθ is the number of
orientations, β is the bandwidth of the filter, and σθ is the angular
bandwidth. Here, the bandwidth of the filter is set to two octaves
(β = 0.55), and the angular bandwidth σθ is set to 1.5 for even
spectrum coverage. Fig. 4 shows examples of the log-Gabor filter.

The filtering operation is performed in the frequency domain. Let
W̃F denote the 2D Fourier transform of the normalised patch W̃ , see
(13). The output of the (k, l)th log-Gabor filter is computed as

Zk,l = |IFFT2(W̃ FGk,l)|, (15)

where IFFT2 denotes the 2D inverse Fast Fourier transform. The
output map is further normalised as

Z̃k,l(i, j) =
Zk,l(i, j)∑Nu
l=1 Zk,l(i, j)

. (16)

This normalisation step provides some degree of intensity
invariance. Next, each output map is partitioned into R = d1 × d2
non-overlapping sub-regions, and the means of all the sub-regions
are concatenated to form a mean vector μk,l = [μ1, …, μR]

T. Then,
the mean values of the L output maps (where L = Nf Nθ) are
3Commons Attribution License



Fig. 3 T–F patch extracted from the spectrogram before and after contrast enhancement

a Input T–F patch
b T–F patch enhanced by the logarithmic scale
c T–F patch enhanced by the Naka–Rushton equation
arranged into a matrix A∈RR×L

A = [m1,1, . . . , mNf ,Nu
]. (17)

Finally, the feature matrix A is normalised to the range [0,1] before
applying a dimensionality reduction technique to generate a compact
feature vector.

3.3 Dimensionality reduction

Two different matrix-based subspace techniques are considered to
reduce the size of the feature matrix A: two-directional 2D PCA,
(2D)2PCA [26] and two-directional 2D linear discriminant
analysis, (2D)2LDA [27]. In comparison to standard PCA and
LDA, the matrix-based methods do not require a matrix-to-vector
conversion to compute the image covariance matrices, thereby
reducing the computational cost significantly. Unlike LDA,
(2D)2LDA does not suffer from the singularity problem for small
training sets. Both (2D)2PCA and (2D)2LDA will be investigated
in the proposed feature extraction. A brief description of each
method is given in the following subsections.

3.3.1 Two-directional 2D PCA, (2D)2PCA: This technique
generates two projection matrices to reduce the number of rows
and columns of an image simultaneously. The compressed map
D∈Rmr×mc, (mr≤ R, mc≤ L), can be rewritten as

D = FT
r AFc, (18)
Fig. 4 Examples of log-Gabor filters with four orientations at a normalised
centre frequency of 0.12 in the 2D frequency domain

4 This is an open access article publi
where Φr and Φc are the projection matrices with orthonormal
components. Then, the columns of matrix D are concatenated to
form a feature vector for classification. Let Y =AΦc. The
projection matrix Φc can be determined by maximising the
following criterion [26]

V(Fc) = trace{E[(Y − E(Y ))(Y − E(Y ))T]}

= trace{E[(AFc − E(AFc))(AFc − E(AFc))
T]}

= trace{FT
cE[(A− E(A))T(A− E(A))]Fc}.

(19)

The image covariance matrix can be defined as Gc = E[{A− E
(A)}T{A− E(A)}], which is an L × L non-negative definite matrix.
Suppose that the training set comprises P patches {A1,…,AP}.
The image covariance matrix Gc can be computed as

Gc =
1

P

∑P
i=1

(Ai − A�)T(Ai − A�), (20)

where A�is the global mean given by

A�= 1

P

∑P
i=1

Ai. (21)

The criterion in (19) can be expressed as

V(Fc) = trace(FT
cGcFc). (22)

The criterion function Ω(Φc) is maximised when Φc is composed of
the mc most dominant eigenvectors of Gc: Fc = [f1, . . . ,fmc

]. The
number of eigenvectors mc is determined using the following
condition ∑mc

i=1 li∑L
i=1 li

≥ g, (23)

where li denotes the ith eigenvalue and g is a fixed threshold.
Similarly, the other projection matrix Φr contains the mr most

dominant eigenvectors of the image covariance matrix Gr, which is
given by

Gr =
1

P

∑P
i=1

(Ai − A�)(Ai − A�)T. (24)

The number of eigenvectors mr in the projection matrix Φr is
estimated using a similar condition to (23).

3.3.2 Two-directional 2D LDA, (2D)2LDA: The LDA
technique considers the class information when forming the
projection matrices. Its principle is to find a linear transformation
IET Radar Sonar Navig., pp. 1–8
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that maximises the between-class scatter and minimises the
within-class scatter of the training set. For (2D)2LDA, the
optimisation of the between-class and within-class scatters is
performed in both row and column directions simultaneously as

D = CT
r ACc, (25)

where Ψr and Ψc are projection matrices. Let C be the number of
classes and Ni be the number of training samples in the ith class.
Let P be the total number of training samples, P = ∑C

i=1 Ni. Let
Ai
p denote the pth sample and A�i be the mean of all samples of the

i th class, A�i = (1/Ni)
∑Ni

j=1 A
i
j. The between-class and

within-class scatter matrices for the row direction are given,
respectively, by

Gbc =
1

P

∑C
i=1

Ni(A�
i − A�)T(A�i − A�), (26)

and

Gwc =
1

P

∑C
i=1

∑Ni

j=1

(Ai
j − A�i)T(Ai

j − A�i), (27)

where A� is the global mean given in (21). Similarly, the
between-class and within-class scatter matrices for designing the
projection matrix Ψr are, respectively

Gbr =
1

P

∑C
i=1

Ni(A�
i − A�)(A�i − A�)T, (28)

and

Gwr =
1

P

∑C
i=1

∑Ni

j=1

(Ai
j − A�i)(Ai

j − A�i)T. (29)

The projection matrices Ψr and Ψc are obtained by maximising the
following Fisher criteria

J (Cr) = trace
CT

r Gbr Cr

Cr Gwr Cr

( )
(30)

and

J (Cc) = trace
CT

c Gbc Cc

Cc Gwc Cc

( )
. (31)

The discrimination vectors in the projection matrices Ψr and Ψc are
the eigenvectors of G−1

wr Gbr and G−1
wcGbc, and the number of

eigenvectors in these matrices is estimated using a similar
condition to (23).
3.4 Classification stage

Support vector machines (SVMs) are used as a classifier because
they possess good generalisation capability. The key concept of
SVMs is to determine an optimal hyperplane that separates two
different classes. A hyperplane is optimal if it maximises the
margin between the two classes, where the margin is defined as
the distance between the hyperplane and a closest training vector.
Consider a training set {xi, yi}

P
i=1, where xi∈Rn is the ith input

vector and yi∈ {1,−1} is the corresponding class label. Training
an SVM classifier involves solving the following optimisation
IET Radar Sonar Navig., pp. 1–8
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min
w,b,j

1

2
wTw+ C

∑P
i=1

ji

{ }
, subject to

yi(w
Tf(xi)+ b) ≥ 1− ji, ji ≥ 0, i = 1, . . . , P.

(32)

Here, f(xi) maps an input vector xi into a higher-dimensional space
so that the classification problem becomes simpler (i.e. linearly
separable). Parameter C is a positive regularisation constant to
control the trade-off between the margin and the misclassification
rate. A dual optimisation problem is given by

max
a

∑P
i=1

ai −
1

2

∑P
i,j=1

aiajyiyjK(xi, xj)

{ }
subject to

0 ≤ ai ≤ C,
∑P
i=1

aiyi = 0,

(33)

where K(xi, xj)≡f(xi)
Tf(xj) is the kernel function. Vector w in the

primal problem is related to variable αi, i∈ [1, P] in the dual
problem as

w =
∑P
i=1

yiaif(xi). (34)

Once αi has been calculated, the decision function is given by

yp(x) = sgn
∑P
i=1

yiaiK(xi, x)+ b

{ }
= sgn wTf(x)+ b

{ }
. (35)

where

b = 1

Ns

∑Ns

i=1

wTxi − yi, (36)

and Ns is the number of support vectors. In this paper, the linear
kernel, K(xi, xj) = xTi xj, is used and parameter C is obtained from
the training set via a cross-validation procedure.
4 Experimental results

In this section, we first describe the experimental setup, and then
investigate the effects of different steps in feature extraction.
Finally, we compare the classification performance of the proposed
method with other feature extraction methods.
4.1 Experimental setup

A 24 GHz frequency modulated continuous wave radar was used for
data acquisition. The beam width of the radar antenna is 7°
horizontal and 25° vertical. The radar was positioned at a height of
0.7 m from the ground. The Doppler data were acquired in two
environments (outdoor and indoor) from 18 subjects (7 females
and 11 males). Each subject performed three motion types: (i)
walking with both arms swinging; (ii) walking with one arm
swinging; and (iii) walking with no arm swinging. Each subject
walked towards the radar at azimuth angles of 0° and 3.5°, and
repeated each motion type three times. The radar signal was
recorded at a sampling rate of 7.812 kHz. Overall, 234 Doppler
signals of length 10 s were recorded. Fig. 5a shows images of
a subject walking with different arm motions and their respective
T–F representations.
5Commons Attribution License



Fig. 5 Images of a subject walking with different arm motions towards the
radar at an azimuth angle of 0° and their T–F representations produced by
the S-method and enhanced by the Naka–Rushton equation

a No-arm swing
b One-arm swing
c Two-arm swing

Fig. 6 CRs of the STFT and S-method as a function of the window length
4.2 Analysis of feature extraction steps

In the proposed method, several adjustable parameters need to be
considered, for example, the window length in the T–F
representation, the number of scales and orientations of the
log-Gabor filters, and the dimensionality reduction settings. A
six-fold cross-validation is performed to investigate the effect of
these parameters on the CR. In each validation fold, five subsets
are used for training, and the remaining subset is used for testing.
This is repeated six times for different choices of the test subset.
The final CR is computed as the percentage of correctly classified
samples, which are aggregated across all the validation folds.
Initially, a signal length of 1 s is used to determine the adjustable
parameters of the proposed method.

4.2.1 T–F representation: In the STFT and S-method, the choice
of the window length can affect the performance significantly. In the
first experiment, the number of discrete Fourier transform points and
the overlap between consecutive windows are set to 2048 and 90%,
respectively. Then a variable window length is used to form the T–F
representation. When the window length is smaller than 2048
samples, the signal is padded with zeros prior to T–F analysis. The
extracted patch is fixed to a height of 128 pixels (Ny = 128) and
contrast enhanced by the Naka–Rushton equation. Initially, a set of
32 log-Gabor filters (four scales and eight orientations) are used.
To compute the mean values of the filtered map as features, the
height d1 of the non-overlapping sub-region is set to 8, whereas
the width d2 is chosen to have a time duration of 125 ms.
Therefore, for an input signal length of 1 s, d2 is equal to 8. In the
following two experiments, the feature vector is directly classified
6 This is an open access article publi
by the SVMs without dimensionality reduction. Fig. 6 depicts the
CR as a function of the window length. Both T–F analysis
methods reach a peak CR with a window length of 139.3 ms.
Further increasing the window length reduces the CR; this is due
to poor time resolution. Both T–F representations will be used in
the succeeding experiments.

4.2.2 Log-Gabor filtering: Discriminative features are extracted
by convolving the pre-processed patch with log-Gabor filters of
different scales and orientations. To design a set of log-Gabor
filters, we vary the number of scales from 3 to 5, and the number
of orientations from 4 to 10. Figs. 7a and b show the CR as a
function of the number of scales and orientations for the STFT
and S-method, respectively. The CR improves markedly when the
number of scales increases from 3 to 4; it reaches a steady state
when the number of scales reaches 4. With four scales, the STFT
obtains a peak CR of 90.0% with eight orientations, whereas the
S-method achieves a CR of 90.4% with nine orientations.
Therefore, we use a set of 32 log-Gabor filters (i.e. four scales and
eight orientations) for the STFT, and 36 log-Gabor filters (i.e. four
scales and nine orientations) for the S-method.

4.2.3 Dimensionality reduction: Two subspace methods,
(2D)2PCA and (2D)2LDA, are evaluated for feature compression.
Fig. 8 presents the CRs as a function of the number of features
obtained by dimensionality reduction. When the number of
features is small, (2D)2LDA performs better than (2D)2PCA.
However, increasing the number of features improves the CR of
(2D)2PCA to the same level as (2D)2LDA. For this classification
problem, (2D)2PCA achieves the highest CR; therefore, it will
be used to reduce the number of features in the following
experiments.

4.2.4 Input signal length: The input signal length is an
important factor in the classification of μ-D radar signature. A too
short signal will not contain adequate cycles of the arm/leg swings
to differentiate between the three human motions, whereas a too
long signal will lead to data redundancy. To investigate the effects
of input signal length, we vary the signal length from 0.5 to 3.0 s
with a step of 0.5 s. For each input signal length, a new SVM
classifier is trained. Fig. 9 presents the CRs as a function of input
signal length. The CR improves when the input signal length
increases from 0.5 to 3 s and reaches a plateau for a signal length
of 1.5 s for S-method and 2 s for STFT. Based on these results, we
use a signal length of 2 s in the following experiments.

4.2.5 Effects of azimuth angle and clutter: So far in Section
4.2, the proposed method has been tested on radar data for
subjects walking towards the radar at an azimuth angle of 0° in an
outdoor environment. We also evaluate the proposed method in
different configurations, especially in the presence of clutter. Here,
the clutter or noise in the received signals includes multi-path
propagations and reflections from other stationary targets. Four
datasets are used. Datasets outdoor-0.0 and outdoor-3.5 are
acquired from subjects walking in an outdoor environment, at an
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Fig. 7 CRs of the log-Gabor filter as a function of the number of scales and
orientations, using

a STFT as T–F analysis
b S-method as T–F analysis

Fig. 8 CRs of different dimensionality reduction techniques as a function of
the number of features
azimuth angle of 0° and 3.5°, respectively. Datasets indoor-0.0 and
indoor-3.5 are acquired from subjects walking along a corridor
inside a building, at azimuth angles of 0° and 3.5°, respectively.
Table 1 lists the CRs of the proposed method on different datasets
using a two-fold cross-validation. The proposed method has a CR
of 91.6% for the indoor-0.0 and 91.4% for the outdoor-0.0. For
subjects walking obliquely towards the radar at an azimuth angle
of ±3.5°, the CR reduces by 0.4% for the outdoor-3.5 and 2.5%
for the indoor-3.5.

In summary, based on the experiments presented in Section 4.2,
we select the following configurations for the proposed method: (i)
S-method for T–F analysis; (ii) the Naka–Rushton equation for
pre-processing the patch; (iii) a set of nine orientations and four
scales log-Gabor filters for generating the feature map; (iv)
(2D)2PCA for dimensionality reduction; (v) input signal length of
2 s; and (vi) SVM classifier.
Fig. 9 CRs of the proposed method for different input signal lengths
4.3 Comparison of feature extraction methods

A six-fold cross-validation is employed to compare different feature
extraction methods. The indoor radar dataset (indoor-0.0) is used to
generate the training and test sets. The dataset is partitioned so that
no human subject appears simultaneously in the training set and
the test set. The radar signals are divided into segments of 2 s.
Each segment is aligned so that it comprises two full gait cycles.

For comparison, four different feature extraction methods are also
tested: (i) MFCC, (ii) CVD, (iii) EMD, and (iv) Gabor filters. In the
MFCC-based method, 40 triangular bandpass filters are used to
IET Radar Sonar Navig., pp. 1–8
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produce 64 mel-scale cepstral coefficients. The analysis window
length and the overlap between successive windows are set to 0.5
and 0.01 s, respectively. In the CVD-based method, the first three
harmonic frequencies and the velocity profile at each harmonic
frequency are used to form a feature vector. Then, the feature
vector is compressed using the standard PCA technique. In the
EMD method, the energies of the IMFs are used as features. The
Gabor filter-based method employs the same number of filters and
applies the same step of converting the filtered outputs into a
feature vector. All the feature extraction methods employ SVMs as
classifier. Furthermore, they are implemented using MATLAB
software and executed on a PC with a 2.9 GHz i7-CPU.

Table 2 presents the CRs and the processing times of different
feature extraction methods. The proposed method achieves the
highest CR of 91.3%, followed by the Gabor filter-based method
with a CR of 79.9%. The EMD method gives the lowest CR,
which indicates that using only the energy of the IMF is not
sufficient to discriminate the subtle differences of the arm swings.
In terms of processing time, the proposed method takes about
0.2405 s on average to extract a feature vector, and its most time
consuming stage is the filtering operation. We should note that no
code optimisation was used in the implementation of the proposed
method; the processing time can be reduced by optimising the
implementation or using a different programming language.
Compared with the proposed method, the Gabor filter-based
method is about 1.14 times faster, but it yields a CR of 11.4%
lower. The MFCC-based method is about 8.84 times faster than
the proposed method, but its CR is 18.6% lower. The CVD-based
method is about 11.5 times faster than the proposed method, but
its CR is 29.0% lower. The EMD method is significantly slower
and less accurate compared with the proposed method. The EMD
high processing time is due to the iterative technique for extracting
the IMFs.

The results shown in Table 2 are obtained using different number
of features for each method. To compare the classification
7Commons Attribution License



Table 1 CRs of the feature extraction method tested on radar signals
collected in different environments

Data acquisition environment Outdoor Indoor

Azimuth angle 0° 3.5° 0° 3.5°

proposed feature extraction, % 91.6 91.2 91.4 88.9

Table 2 CRs obtained using six-fold cross-validation of different feature
extraction methods

Method Features CR ± std, % Extraction time, s

proposed method 3277 91.3 ± 6.9 0.2405
Gabor filters 2408 79.9 ± 7.5 0.2105
MFCC 40 72.7 ± 7.2 0.0272
CVD 1638 62.3 ± 5.1 0.0210
EMD 16 41.6 ± 3.2 8.4400

Fig. 10 CRs of the proposed method and other feature extraction methods
as a function of the number of features
performances of the different methods using the same number of
features, Fig. 10 illustrates the CRs of the feature extraction
methods as a function of the number of input features. Clearly, the
CRs of the proposed method are still higher than those of the
other methods, when using the same number of features.
5 Conclusion

This paper presents a 2D feature extraction method for classifying
μ-D radar signature of human motions. The radar return is
transformed into a T–F representation using the S-method. Instead
of processing the entire T–F representation, a small patch centred
on the torso frequency is automatically extracted to improve
stability against the target speed. The T–F patch is then contrast
normalised to highlight the weak μ-D modulations. Log-Gabor
filters are employed to detect salient features at multiple scales and
orientations, and (2D)2PCA is applied for dimensionality
reduction. The proposed method is validated using μ-D radar
signals obtained from human subjects walking with various arm
motions. Experimental results show that it achieves promising
results in classifying different human motions.
8 This is an open access article publi
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