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a b s t r a c t 

Automatic detection of the pedestrian lane in a scene is an important task in assistive and autonomous 

navigation. This paper presents a vision-based algorithm for pedestrian lane detection in unstructured 

scenes, where lanes vary significantly in color, texture, and shape and are not indicated by any painted 

markers. In the proposed method, a lane appearance model is constructed adaptively from a sample im- 

age region, which is identified automatically from the image vanishing point. This paper also introduces a 

fast and robust vanishing point estimation method based on the color tensor and dominant orientations 

of color edge pixels. The proposed pedestrian lane detection method is evaluated on a new benchmark 

dataset that contains images from various indoor and outdoor scenes with different types of unmarked 

lanes. Experimental results are presented which demonstrate its efficiency and robustness in comparison 

with several existing methods. 

© 2016 The Authors. Published by Elsevier Inc. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ). 
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1. Introduction 

Locating the pedestrian lane in a given scene is a key compo-

nent in many assistive and autonomous navigation systems. It en-

ables a vision-impaired person to find the walkable path and main-

tain his or her balance while walking – a challenging task that at

present is performed mostly using a white cane or a guided dog

[1] . It also allows a smart wheelchair to traverse a pedestrian lane

with little guidance from the disabled user [2] . Pedestrian lane

detection is also useful for autonomous vehicles in sensing off-

limit regions or pedestrians in a scene [3] . Furthermore, algorithms

for finding the pedestrian lane can be extended to locate open

roads for self-driven cars or robots. Pedestrian lane detection in

fact complements other features, e.g. obstacle detection [4,5] and

GPS-based guidance [6] , of electronic navigation devices. 

Despite its significance, there are only a few methods proposed

for pedestrian lane detection, which are mostly concerned with

pedestrian lanes having white markers [7–10] . To address this gap,

this paper focuses on camera-based detection of pedestrian lanes

in unstructured environments. In this paper, a pedestrian lane is

assumed to exist in the scene. However, the scene is under varying

lighting conditions and could be indoor or outdoor. Furthermore,

the pedestrian lanes can have arbitrary surfaces with no painted

markers. 
∗ Corresponding author. Tel. +61 242213407. 
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Existing algorithms for unmarked lane detection (including

edestrian lanes) rely on color and texture of lane surfaces to dif-

erentiate the lane pixels from the background [11–14] . These algo-

ithms require off-line training, and hence their detection accuracy

ecreases when the lane appearance differs from the training data.

n practice, the lane appearance varies significantly due to different

ane surfaces or illumination conditions. Other existing algorithms

ocate the lane boundaries among the edges that point to the van-

shing point of the image [15,16] . However, algorithms based on

nding the lane borders are sensitive to background clutter. In this

aper, we propose a new method to detect unmarked pedestrian

anes using both color, edge, and shape features. In contrast to the

xisting methods, the proposed approach constructs a lane model

rom the input image, and is therefore more adaptive to different

llumination conditions and lane surfaces. The main contributions

f the paper can be briefly described as follows: 

• Firstly, we propose an improved vanishing point estimation

method using local orientations of color edge pixels. Estimat-

ing the vanishing point using edge pixels is more efficient than

using all pixels as done in the existing methods [15,16] . In ad-

dition, to estimate local orientations and edge pixels more ro-

bustly, we apply the color tensor on multiple color channels,

instead of relying on only the intensity channel. 
• Secondly, we present a method to define automatically a sam-

ple region, from which a lane appearance model is constructed

adaptively for each input image. This sample region is deter-

mined using the vanishing point and the geometric and color
nder the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ). 

http://dx.doi.org/10.1016/j.cviu.2016.01.011
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cviu
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cviu.2016.01.011&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:phung@uow.edu.au
mailto:clm635@uowmail.edu.au
mailto:bouzer@uow.edu.au
http://dx.doi.org/10.1016/j.cviu.2016.01.011
http://creativecommons.org/licenses/by-nc-nd/4.0/


S.L. Phung et al. / Computer Vision and Image Understanding 149 (2016) 186–196 187 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

m  

i  

p  

c

2

 

i  

s  

t  

l  

a  

u  

r  

s  

m  

h  

C  

c  

s  

s  

m  

c  

b  

c  

c

 

e  

m  

e  

a  

t  

t  

p  

l  

a  

m  

t

 

d  

l  

t  

r  

t  

g  

g  

o  

t  

r  

c  

i  

b  

g  

p  

f  

b  

u  

b  

r  

t  

t  

p  

s

3

 

s  

(  

l

3

 

l  

t  

m  

t  

t  

b  

o  

t  

t  

c  

c

 

s  

c  

t  

L  

t

(

 

e  

v  

l

θ

λ

w  

N  

s  

b  
features of lane borders and surfaces. The lane model is there-

fore adaptive to various types of lane surfaces. To make the lane

model more robust to the lighting conditions, this paper em-

ploys the illumination-invariant color space (IIS). In addition,

we propose a novel lane score that combines color, edge, and

shape features for detecting unmarked pedestrian lanes. 
• Lastly, we create a new dataset with manually anno-

tated ground-truth for objective evaluation of algorithms for

vanishing-point estimation and pedestrian-lane detection. Al- 

though several datasets exist for road/lane detection for ve-

hicles, our dataset, to the best of our knowledge, is the first

for pedestrian lanes. This dataset, collected from realistic in-

door and outdoor scenes, with various shapes, textures, and

surface colors, is expected to facilitate research in vanishing-

point estimation and pedestrian-lane detection. It is available

at www.uow.edu.au/ ∼phung/plvp _ dataset.html . 

The remainder of the paper is organized as follows. Existing

ethods for lane detection in unstructured scenes are reviewed

n Section 2 . The proposed method is presented in Section 3 . Ex-

erimental results and analysis are described in Section 4 . Finally,

onclusions are given in Section 5 . 

. Related work 

Current vision-based approaches for detecting pedestrian lanes

n unstructured scenes can be divided into two categories: (i) lane

egmentation, and (ii) lane-border detection. In the lane segmen-

ation approach, off-line color models are used to differentiate the

ane pixels from the background [11,12,17,18] . Different color spaces

nd classifiers have been used. For example, Crisman and Thorpe

se Gaussian models in the red–green–blue (RGB) color space to

epresent the on-road and off-road classes [11] . Also using the RGB

pace, Tan et al. capture the variability of the road surface with

ultiple color histograms, and the background with a single color

istogram [12] . Instead of using the RGB space, Ramstrom and

hristensen employ UV, normalized red and green, and luminance

omponents and construct Gaussian mixture models for the road-

urface and background classes [18] . Sotelo et al. employ the hue-

aturation-intensity (HSI) color space [17] . In their method, achro-

atic pixels (i.e. with extreme intensities or low saturations) are

lassified using intensity only, whereas other pixels are classified

y thresholding their chromatic distance to the training colors. Be-

ause the color models are trained off-line, these methods do not

ope well with the appearance variations in lane surfaces. 

To address this problem, several methods model the lane pix-

ls directly from sample regions in the input image [19–22] . These

ethods determine the sample lane regions in different ways. For

xample, Alvarez et al. select small random areas at the bottom

nd in the middle of the input image [22,23] . Miksik et al. initialize

he sample lane region as a trapezoid at the bottom and center of

he image, and then refine the sample region using the vanishing

oint [21] . He et al. form a sample lane region from the candidate

ane boundaries, which are detected using the vanishing point and

n assumption about the lane width [19] . The performance of these

ethods depends on the quality of the sample regions, which in

urn relies on prior knowledge about the walking lane. 

In the lane-border detection approach, the lane boundaries are

etermined using the vanishing point [15,16] or templates of the

ane boundaries [24] . In [15] , the lane borders are detected among

he edges pointing to the vanishing point. The optimal left and

ight edges are judged using an objective function that measures

he color and texture differences between lane and non-lane re-

ions. This method is effective only when the lane region is homo-

eneous and differs significantly from non-lane regions in terms

f color and texture. Kong et al. also find the lane borders from
he edges pointing to the vanishing point, except that their method

anks edges using texture orientation and color features [16] . Be-

ause this method relies only on edges for lane-border detection,

t is sensitive to background edges. In another method, the lane

oundaries are found from the edges of homogeneous color re-

ions by matching with lane templates [24] . Recently, Chang et al.

ropose combining lane-border detection and road segmentation

or detecting lanes [25] . Similarly to [16] , their method detects lane

orders using the vanishing point. The lane region is segmented

sing the color model learned from a homogeneous region at the

ottom and middle of the input image. In [26] , the two left and

ight borders of the lane are found among the rays that point to

he vanishing point; this approach is suitable mainly for pedes-

rian lanes with straight-line borders. This paper extends this ap-

roach to detect pedestrian lanes with curved borders and varied

urfaces. 

. Proposed pedestrian lane detection method 

In this section, we present the new method for detecting un-

tructured pedestrian lanes, which comprises three main stages:

i) vanishing point estimation, (ii) sample region selection, and (iii)

ane segmentation. 

.1. Vanishing point estimation 

The vanishing point in an image is often located using either

ine segments [27–29] or local orientations [15,16,30] . For unstruc-

ured scenes with non-straight edges, using local orientations is

ore suitable than using line segments for vanishing point es-

imation. However, most existing methods based on local orien-

ations have high computational complexity and are sensitive to

ackground clutter. Furthermore, they rely on the intensity channel

nly, even though color channels provide photometric information

hat can lead to more robust detection of edges and local orienta-

ions. In this paper, we propose to improve the accuracy and effi-

iency of vanishing point detection, by employing color tensor to

apture image structure and focusing on edge pixels only. 

The color tensor is a tool for analyzing the local differential

tructure of a color image [31] . Consider an image with three color

hannels: F = { F k ; k = 1 , 2 , 3 } . Let D k , x and D k , y denote the deriva-

ives of F k along the horizontal and vertical direction, respectively.

et w be the convolution kernel of a smoothing filter. The color

ensor of the image is represented as 

G xx G xy 

G yx G yy 

)
where 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

G xx = w ∗
[

3 ∑ 

k =1 

D k,x ◦ D k,x 

]

G yy = w ∗
[

3 ∑ 

k =1 

D k,y ◦ D k,y 

]

G xy = w ∗
[

3 ∑ 

k =1 

D k,x ◦ D k,y 

]
. (1) 

Here, ∗ denotes the 2-D convolution, and ◦ denotes the

lement-wise multiplication (Hadamard product). Based on eigen-

alue analysis of the color tensor [31] , we estimate the dominant

ocal orientation θ and the edge strength λ for all image pixels as 

= 

1 

2 

arctan 

(
2 G xy 

G xx − G yy 

)
+ 

π

2 

, (2) 

= 

1 

2 

(
G xx + G yy + 

√ 

(G xx − G yy ) 2 + 4 G 

2 
xy 

)
, (3) 

here the arithmetic operations are performed element-wise.

ext, the edge pixels in the image are identified via non-maximum

uppression and hysteresis thresholding, as done in the intensity-

ased Canny edge detector. The main difference in this paper is

http://www.uow.edu.au/~phung/plvp_dataset.html
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Fig. 1. Illustration of the proposed vanishing point estimation: (a) color input image; (b) local orientations estimated by the color tensor for sampled pixels; (c) edge map 

obtained by the color Canny edge detector; (d) VP map and the vanishing point (in red). See the electronic color image. (For interpretation of the references to color in this 

figure legend, the reader is referred to the web version of this article.) 

Fig. 2. Selecting the sample lane region: (a) rays created from the vanishing point; (b) properties of a single ray; (c) properties of a pair of rays. (For interpretation of the 

references to color in this figure, the reader is referred to the web version of this article.) 
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that the dominant local orientation θ and the edge strength λ are

estimated more reliably using photometric information obtained

from (2) and (3) . For the input image of Fig. 1 (a), Fig. 1 (b) shows

the computed local orientations, and Fig. 1 (c) shows the estimated

edge map. 

To determine the vanishing point (VP), each pixel location v =
(x v , y v ) is considered as a candidate, for which a VP score is com-

puted. Let P be the set of edge pixels { p = (x p , y p ) } where y p > y v .

Let �v p be the difference between the dominant local orienta-

tion at pixel p and the angle of vector � v p connecting v to p :

�v p = | θp − ∠ � v p | . Let μv p be the ratio between the length of � v p
and the diagonal length L of the image: μv p = | � v p | /L . After inves-

tigating several choices, we propose to define the contribution of

pixel p to the score of candidate pixel v as 

s (v , p) = 

{
exp ( −�v p μv p ) , if �v p ≤ τo , 

0 , otherwise . 
(4)

Here, τo is a positive threshold on the orientation similarity be-

tween p and � v p . Eq. (4) means that s (v , p) is high if (i) pixel p has

a similar orientation to vector � v p , and (ii) pixel p is spatially close

to v . The VP score of candidate v is the sum of contributions from

all pixels in P : 

S(v ) = 

∑ 

p∈ P 
s (v , p) . (5)

The vanishing point is finally found as the pixel with the high-

est VP score. Fig. 1 (d) illustrates the VP map and the vanish-

ing point computed for the image in Fig. 1 (a). More results of

the proposed method for vanishing point estimation are given in

Section 4.3 . 

3.2. Sample region selection 

Because the appearance (e.g. color, edge, shape, texture) of

pedestrian lanes in unstructured scenes varies significantly and is
trongly affected by illumination conditions, it is difficult to ob-

ain a robust appearance model with off-line training. Hence, it is

ore plausible to construct an appearance model adaptively and

irectly from the input image. To this end, existing methods (e.g.

20,21,23] ) usually select the sample region as a small region at the

ottom or center of the input image. However, the sample region

elected in such a manner tends to include non-lane regions. In

ur approach, the sample region is automatically defined using the

anishing point (estimated in the previous stage), and then verified

sing color and orientation features of both lane borders and lane

egions. 

Although a lane may have various shapes, its main part can be

pproximated with straight borders. Hence, it is possible to repre-

ent the border of the sample region using imaginary rays. To this

nd, a set of rays B = { r 1 , r 2 , . . . , r N } emanating from the vanish-

ng point is created as shown in Fig. 2 (a). These rays are uniformly

paced over an angle range [ φmin , φmax ] relative to the horizontal

irection. The sample region is identified by finding a ray pair ( r i ,

 j ) that best captures the main part of the pedestrian lane. 

For a given ray r two features are defined: (1) the orientation

ifference d o between ray r and its neighboring pixels; (2) the

olor difference d c between two regions adjacent to r , see Fig. 2 (b).

et θ r denote the angle of ray r . Let N r be the set of pixels whose

uclidean distance to r is smaller than L τ e . Here, L is the diagonal

ength of the image, and τ e is a threshold. The orientation differ-

nce d o between r and its neighboring pixels is calculated as 

 o = 

1 

|N r | 
∑ 

p∈N r 
| θr − θp | , (6)

here θp is the orientation of pixel p computed in (2) . 

Let R + r and R −r be two neighboring regions on the left and right

f ray r as shown in Fig. 2 (b). These regions are formed from ray r

y an angular spacing of φ. Suppose that c + and c − are the mean

olor of all pixels in R + and R −, respectively. The color difference
r r 
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 c between adjacent regions of ray r is computed as 

 c = 

|| c + − c −|| 2 
max (|| c + || 2 , || c −|| 2 ) , (7) 

here || · || 2 denotes the L 2 -norm. 

Next, for a given ray pair ( r i , r j ) two features are defined: (1)

he color uniformity u ij of pixels between r i and r j ; (2) the angle

ij of the bisector between r i and r j . Let R ij denote an image region

ormed by a ray pair ( r i , r j ) as shown in Fig. 2 (c). The uniformity

 ij of R ij is computed as 

 i j = 

M ∑ 

m =1 

M ∑ 

n =1 

M ∑ 

k =1 

h (m, n, k ) 2 , (8)

here h is the normalized 3-D color histogram of pixels in R ij , and

 is the number of bins for each color channel. 

In summary, for a given ray pair ( r i , r j ), six features are ex-

racted: (1) the orientation difference d o, i of ray r i and its neigh-

oring pixels; (2) the orientation difference d o, j of ray r j and its

eighboring pixels; (3) the color difference d c, i between adjacent

egions of ray r i ; (4) the color difference d c, j between adjacent re-

ions of ray r j ; (5) the color uniformity of u ij of region R ij ; 6) the

isector angle φij of ray r i and r j . 

Given these six features, we propose the following lane score

or the ray pair ( r i , r j ): 

f (r i , r j ) = f 1 (d o ,i ) f 1 (d o , j ) f 2 (d c ,i ) f 2 (d c , j ) f 3 (u i j ) f 4 (φi j ) , (9)

here the individual score functions are given by: 

f 1 (d o ) = exp { −d o /π} , (10) 

f 2 (d c ) = 

1 

1 + a e −b d c 
, (11) 
l

ig. 3. Illustration of the proposed method for pedestrian lane detection: (a) the imagina

ane sample region (blue region); (c) color homogeneous sub-regions segmented using th

mage. (For interpretation of the references to color in this figure legend, the reader is ref
f 3 (u ) = 

1 

1 + α e −β u 
, (12) 

f 4 (φ) = 

1 

σ
√ 

2 π
exp 

{
− (φ − φ) 2 

2 σ 2 

}
. (13) 

n Eqs. (10) –(13) , a , b , α, β , σ and φ are fixed parameters that are

etermined empirically from the training data. The individual score

unctions are chosen to model the relationship between a feature

nd the lane score. For example, Eq. (10) means that the smaller

s the orientation difference d o (i.e. when neighboring pixels have

imilar orientations as ray r ), the higher is the score f 1 ( d o ), and

ice versa. Eq. (11) indicates that the higher is the color difference

 c (i.e. when ray r is at the lane border), the higher is the score

 2 ( d c ). Eq. (12) means that the higher is the color uniformity u , the

igher is the score f 3 ( u ). Lastly, Eq. (13) is based on the observa-

ion that the bisector angle on training data approximates a normal

istribution. 

The optimal pair (r ∗
i 
, r ∗

j 
) for the sample region is obtained by

aximizing the lane score: 

(r ∗i , r 
∗
j ) = arg max 

(r i ,r j ) ∈B 2 
f (r i , r j ) . (14)

Fig. 3 (a) shows an example of detecting the borders of the sam-

le region. Instead of using the entire triangular region defined

y (r ∗
i 
, r ∗

j 
) , we use only the trapezoidal region (lower-half) formed

y the two rays as a lane sample region, see Fig. 3 (b). This strat-

gy is adopted to improve the stability of the lane model, even if

he vanishing point is located outside the image or the pedestrian

ane. 
ry rays (blue lines) and the detected borders (green lines) of the sample region; (b) 

e graph-based method [32] ; (d) segmented walking lane. See the electronic color 

erred to the web version of this article.) 
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3.3. Lane segmentation 

In this stage, the input image is segmented initially into color

homogeneous sub-regions. Numerous image segmentation algo-

rithms can be applied. In this paper we use the graph-based seg-

mentation algorithm presented in [32] , because it is fast and suit-

able for our task . This algorithm initializes sub-regions as single

pixels. Adjacent sub-regions are then merged iteratively, according

to the color difference between the sub-regions. Fig. 3 (c) illustrates

the segmented regions for the input image of Fig. 1 (a). 

Next, the pedestrian lane is detected. Let R = { R 1 , R 2 , . . . } be

the set of color homogeneous sub-regions. The pedestrian lane is

treated as a set Z of connected sub-regions of R . Two sub-regions

R i and R j are considered to be connected if there exist two pixels

p i ∈ R i and p j ∈ R j that are connected (e.g. 4-connected pixels). 

A connected region Z ⊂ R is represented by a color feature and

a shape feature. The color feature c is the mean of all color pixels

in Z . The lane score for a given color feature c is defined as 

g 1 (c ) = p(c |L ) , (15)

where p(c |L ) is the class-conditional probability density function

for the lane class. It is estimated from the color histogram of all

pixels in the sample lane region, which is found as in Section 3.2 .

In this paper, we consider two color spaces: the red–green–blue

(RGB) and the illumination invariant space (IIS). Compared to the

RGB, the IIS is less sensitive to illumination conditions and shading.

Conversion from the RGB to the IIS is as follows [33] : ⎧ ⎨ 

⎩ 

C 1 = arctan { R/ max (G, B ) } , 
C 2 = arctan { G/ max (R, B ) } , 
C 3 = arctan { B/ max (R, G ) } . 

(16)

The shape feature s is extracted using the shape contexts pro-

posed in [34] . The shape contexts are known for their robustness

to local deformation and partial occlusion, and their invariance to

scale and rotation. Consider a shape with sampling points on its

contour. The shape context of a sampling point p is the histogram

h p of the angles and distances from the remaining sampling points

to p . 

The dissimilarity between the shape contexts of two points p

and q is represented as 

(p, q ) = 

1 

2 

K ∑ 

k =1 

[ h p (k ) − h q (k )] 2 

h p ( k ) + h q (k ) 
, (17)
Fig. 4. Example shape templates for pedestrian lanes. Row 1: straig
here K is the number of bins of each shape context. On a single

hape, the shape contexts of the points p and q are different, i.e.

 ( p , q ) is high. However, on two similar shapes, the shape contexts

f two corresponding points p and q are similar, i.e. C ( p , q ) is low. 

Let T = { T 1 , T 2 , . . . } be a set of shape templates for pedestrian

anes. Examples of the shape templates obtained from the training

ata are shown in Fig. 4 . To obtain shape feature s , the outer con-

our of region Z is sampled in a similar way as the templates. The

atching cost D ( s , T ) between s and a template T is modeled as 

 (s , T ) = 

1 

| s | 
∑ 

p∈ s 
min 

q ∈ T 
C(p, q ) , (18)

here | s | denotes the number of sampling points on s . The smaller

s the matching cost D ( s , T ), the higher is the similarity between s

nd T . Consequently, the lane score for shape feature s is defined

s 

 2 (s ) = exp 

[ 
−λ min 

T ∈T 
D (s , T ) 

] 
, (19)

here λ is a positive scalar determined from the training data. 

Collectively, the lane score for region Z with color feature c and

hape feature s is calculated as 

(Z) = g 1 (c ) g 2 (s ) . (20)

The optimal region Z ∗ of R is found by maximizing the lane

core: 

 

∗ = arg max 
Z⊂R 

g(Z) . (21)

The optimal region Z ∗ can be obtained with a computational

omplexity of O (2 |R| ) via an exhaustive search among the subsets

f R . To reduce the computational load, we adopt a greedy-search

lgorithm [35] , which generates Z ∗ by iteratively adding and re-

oving sub-regions (see Algorithm 1 ). At each iteration, a sub-

egion is added to or removed from Z ∗, only if the connectivity

f the new Z ∗ is satisfied and the lane score g ( Z ∗) is increased.

n addition, for faster search we consider only sub-regions R i ∈ R
ith p(c |L ) greater than or equal to a predefined threshold τ c .

ecause the number of sub-regions is finite and the operators in

lgorithm 1 are deterministic, the algorithm will converge. 

Finally, the optimal region Z ∗ obtained using Algorithm 1 is

onsidered as a pedestrian lane region if 

(Z ∗) ≥ τv , (22)
ht lanes. Row 2: left-curved lanes. Row 3: right-curved lanes. 
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Algorithm 1 Adding and removing regions for pedestrian lane de- 

tection. 

R 

′ ← { R i ∈ R | p(c i |L ) ≥ τc } 
Z ∗ ← arg max R i ∈R 

′ p(c i |L ) 

continue ← TRUE 

while continue do 

R add ← { R i ∈ {R 

′ − Z ∗} so that Z ∗ ∪ R i is a connected set } 
R + ← arg max 

R i ∈R add 

g(Z ∗ ∪ R i ) 

R rmv ← { R i ∈ Z ∗ so that { Z ∗ − R i } is a connected set } 
R − ← arg max 

R i ∈R rmv 

g(Z ∗ − R i ) 

if g(Z ∗ ∪ R + ) > g(Z ∗) and g(Z ∗ ∪ R + ) ≥ g(Z ∗ − R −) then 

Z ∗ ← Z ∗ ∪ R + 

else if g(Z ∗ − R −) > g(Z ∗) then 

Z ∗ ← Z ∗ − R −

else 

continue ← FALSE 

end if 

end while 
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Table 1 

Statistics of the PLVP dataset. 

Description Number of images Percentage (%) 

Brick surfaces 637 31 .85 

Concrete surfaces 944 47 .20 

Pavement surfaces 179 8 .95 

Indoor surfaces 159 7 .95 

Other surfaces 81 4 .05 

Normal lighting 1393 69 .65 

Shadows, extreme lighting 607 30 .35 
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here τ v is a verification threshold learnt using training data. This

tep is necessary because the scene may contain no pedestrian

ane. Fig. 3 (d) illustrates the result of lane detection for the input

mage shown in Fig. 1 (a). 

. Experimental results 

In this section, we first describe the image data and evaluation

easures ( Section 4.1 ). We then discuss the parameters used in

he proposed method ( Section 4.2 ), and present the experimental

esults of vanishing point estimation ( Section 4.3 ) and pedestrian

ane detection ( Section 4.4 ). 

.1. Image dataset and performance measures 

We created an image dataset for pedestrian lane detection and

anishing point estimation (PLVP). The dataset consists of 20 0 0

mages that were taken under various environmental conditions

indoor and outdoor scenes, different times of day, and differ-

nt weather conditions). The images contain unmarked pedestrian

anes with various surface structures (pavement, brick, concrete,

r soil) and shapes (straight or curved). In many cases, lane re-

ions are affected by extreme lighting conditions (e.g. very low il-

umination, very high illumination, or strong shadow). To enable

uantitative performance evaluation, we manually annotated the

ane region and the vanishing point in each image. An example

rom the PLVP dataset is shown in Fig. 5 . Statistics regarding the

ane surfaces and the lighting conditions are given in Table 1 . The

ataset is available for download from www.uow.edu.au/ ∼phung/

lvp _ dataset.html . 
ig. 5. An example from the PLVP dataset. Left : an input color image. Middle : the ground

olor image. (For interpretation of the references to color in this figure legend, the reader
To evaluate pedestrian lane detection, the detected regions

re compared with the annotated regions. Suppose that R d is a

achine-detected region and R g is a ground-truth region. The

atching score between R d and R g is computed as 

(R g , R d ) = 

| R g ∩ R d | 
| R g ∪ R d | , (23)

here | R | denotes the area of region R , ∩ denotes the intersection,

nd ∪ denotes the union of R d and R g . Detected region R d is con-

idered as correct if there exists a ground-truth region R g where

( R g , R d ) is greater than or equal to an evaluation threshold τ e .

imilar to the evaluation of other object-detection systems [36,37] ,

e is set to 0.5. 

For pedestrian lane detection, three evaluation measures are

omputed: recall, precision and F-measure. Recall is the percent-

ge of the ground-truth lanes that are detected correctly. Precision

s the percentage of the machine-detected lanes that are consid-

red to be correct. F-measure is the harmonic mean of precision

nd recall: 

-measure = 2 × Recall × Precision 

Recall + Precision 

. (24) 

To evaluate vanishing point estimation, the detected vanishing

oint is compared with the ground-truth vanishing point. Sup-

ose that P d is a machine-detected vanishing point, and P g is the

round-truth vanishing point. Consistently with [30] , the estima-

ion error for an image is measured as the ratio of the Euclidean

istance from P d to P g versus the diagonal length L of the image:

 vp = 

| P d − P g | 
L 

. (25) 

The averaged estimation error across all test images is used to

ompare vanishing point estimation algorithms. 

.2. Algorithm parameters 

In our experiments, 500 images (image number 1 to 500)

ere used for training, and 1500 images (image number 501–

0 0 0) were used for testing. Note that in the PLVP dataset, im-

ges collected from multiple sources were given randomized image
-truth pedestrian lane. Right : the ground-truth vanishing point. See the electronic 

 is referred to the web version of this article.) 

http://www.uow.edu.au/~phung/plvp_dataset.html
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Table 2 

Vanishing point estimation performance of the proposed method on the training 

set for different values of H . 

Gaussian 

window size H 5 7 11 13 17 19 

Average error 0.0969 0.0838 0.0737 0.0694 0.0662 0.0783 

Table 3 

Vanishing point estimation performance of the proposed method on the 

training set for different values of τ o . 

Angle interval τ o π /180 π /36 π /18 π /12 π /9 

Average error 0.0914 0.0675 0.0659 0.0674 0.0677 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5 

Lane detection performance of the proposed method on the training 

set for different color bin numbers. 

Number of color bins M 16 32 64 128 256 

Recall (%) 93.0 92.8 92.6 92.2 92.2 

Precision (%) 97.5 97.5 97.5 97.1 97.1 

F-measure (%) 95.2 95.1 95.0 94.6 94.6 

Table 6 

Performance of vanishing point estimation algorithms on the test set. 

Method Average error Computation 

times 

Hough-based method (Wang et al. [27] ) 0.1199 ± 0.1802 0.029 

Gabor-based method (Kong et al. [16] ) 0.0809 ± 0.1034 2.980 

OLDOM (Moghadam et al. [30] ) 0.1964 ± 0.1086 0.595 

Proposed VPE method 0.0707 ± 0.0954 0.595 
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numbers. The parameters of the proposed method were selected

by analyzing the performance of the pedestrian lane detection on

the training set. 

For the processing steps described in Section 3.1 , two param-

eters need to be determined: the window size H of the Gaussian

filter w , and the angle interval τ o , see (4) . Table 2 shows the VPE

error on the training set for different values of H . Based on this ta-

ble and in order to reduce the filtering time, we selected H = 13 .

Table 3 shows the VPE error on the training set for different val-

ues of τ o . Based on this table and in order to reduce the number

of non-zero votes (by using a smaller τ o ), we selected τo = π/ 36 . 

For the steps described in Section 3.2 , a similar strategy was

adopted to determine the values of the parameters. The number

of imaginary rays was selected as N = 29 , and the angle range of

imaginary rays was selected as [ φmin , φmax ] = [ π/ 9 , 8 π/ 9] . The an-

gular spacing was set as φ = π/ 12 . The parameters a and b in (11) ,

α and β in (12) , σ and φ in (12) were set as a = 0 . 9 , b = 2 . 3 ,

α = 0 . 9 , β = 2 . 3 , and σ = 0 . 3437 and φ = 1 . 5970 . 

For the steps described in Section 3.3 , the thresholds τ c and τ v 

were selected as τc = 0 . 02 and τv = 0 . 01 . Table 4 shows the lane

detection performance of the proposed method on the training set

for different values of the shape parameter λ in (19) . Based on this

result, we selected λ = 5 . 0 . Table 5 shows the lane detection per-

formance of the proposed method on the training set for different

numbers of color quantization bins M . The F-measure fluctuated

slightly for M = 16 , 32 , 64 , and reduced when M = 128 , 256 . Based

on this result, we selected M = 16 for our experiments. 

4.3. Analysis of vanishing point estimation 

The proposed method for vanishing point estimation was com-

pared with three existing methods. 

• Hough-based method [27] : This method first applies the Hough

transform on the edge map to find line segments. It then

computes the vanishing point by voting the intersections of

line pairs in another Hough transform. In the experiments, we

used the same edge map as in the proposed method. The dis-

tance and orientation resolutions in the Hough transforms were

tuned using the training set. 
• Gabor-based method [16] : This method applies Gabor filters on

the intensity image to compute local orientations, and then es-
Table 4 

Lane detection performance of the proposed method

Parameter λ 1 2 3 4 5

Recall (%) 91.0 92.2 92.6 92.8 9

Precision (%) 97.0 96.2 96.3 96.3 9

F-measure (%) 93.9 94.2 94.4 94.5 9
timates the vanishing point using these orientations. Each pixel

location v in the top 90% region of the image is considered as a

VP candidate. It is voted by all pixels p in the half-disk region,

which is centered on v and below v . Our experiments used the

MATLAB code provided by the authors of [16] . However, the

parameters of the Gabor-based method were tuned using the

training set. 
• Optimal local dominant orientation method (OLDOM) [30] : This

method uses four Gabor filters to estimate the local dominant

orientation θ at each pixel p in the intensity image. The upward

ray r originating from pixel p and along orientation θ is then

identified. Each pixel along ray r will accumulate a voting score

according to its distance to pixel p . Finally, the image pixel with

the highest voting score is considered as the image vanishing

point. 

Table 6 shows the performance of different VPE algorithms on

he test set of 1500 images. The average error of the proposed

ethod (0.0707) was significantly lower than that of the Hough-

ased method (0.1199) and the OLDOM (0.1964). The Hough-based

ethod employs straight lines for finding the vanishing point. It

oes not work well for natural scenes that contain many non-

traight edges. The OLDOM is designed for speed and it uses only

our Gabor filters to estimate the local dominant orientations [30] .

urthermore, to calculate the voting score, the OLDOM uses only

ixel distance, whereas our method takes into account both pixel

istance and pixel orientation difference. The proposed method

lso had a lower average error (0.0707) compared to the Gabor-

ased method (0.0809) [16] . The Gabor-based method calculates

he voting score for each vanishing point candidate from all pix-

ls in a half-disk region, and is therefore affected by clutter pixels.

urthermore, the Gabor-based method uses only intensity for com-

uting the edge orientations and magnitudes. In comparison, the

roposed method uses only edge pixels for voting, and therefore

educes significantly the computation load and the influence of

ackground pixels. Moreover, the proposed method employs mul-

iple color channels for finding edge pixels and their orientations
 on the training set for different λ. 

 6 7 8 9 10 

3.2 93.2 93.2 93.2 93.2 93.2 

6.3 96.3 96.1 96.1 95.9 95.9 

4.7 94.7 94.6 94.6 94.5 94.5 
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Fig. 6. Visual results of vanishing point estimation. Ground-truth VP: red dot. VP detected by the proposed method: green marker. VP detected by Hough-based method [27] : 

yellow marker. VP detected by Gabor-based method [16] : blue marker. VP detected by OLDOM [30] : cyan marker. See the electronic color image. (For interpretation of the 

references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 7. Visual comparative results of different methods for pedestrian lane detection. Column 1: input images. Column 2: output of the edge-based method [16] . Column 3: 

output of the lane-border detection method [26] . Column 4: output of the proposed method using the RGB color space. Column 6: output of the proposed method using the 

IIS color space. See the electronic color image. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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(via color tensor). Hence, it can distinguish color pixels even if they

have similar intensity. 

For images of size 100 × 140 pixel, the average processing

time per image of the proposed method (0.595 s) was significantly

shorter than that of the Gabor-based method (2.980 s) and was al-

most the same as that of the OLDOM (0.595 s). That is, the pro-

posed method was about 5.0 times faster than the Gabor-based

method. Although the Hough-based method had the shortest pro-

cessing time per image (0.029 s), it also had the highest error

(0.1199) among the four tested methods. Fig. 6 shows examples of

VPE using different methods. As can be seen, the proposed method

estimates the vanishing point more accurately, compared to the

Hough-based method, Gabor-based method, and the OLDOM. 
 

Table 7 

Performance comparison of pedestrian lane detection

Methods Re

(%

Edge-based method (Kong et al. [16] ) 62

Lane-border detection method (Le et al. [26] ) 89

Proposed method using RGB 92

Proposed method using IIS 93

Fig. 8. Visual sample results of the proposed method for detecting pedestrian lanes in ind

6 and 8: detected lanes. See the electronic color images. (For interpretation of the referen

article.) 
.4. Analysis of pedestrian lane detection 

For pedestrian lane detection, we compared the proposed

ethod with two related methods: 

• Edge-based method (Kong et al. [16] ): This approach detects

the lane boundaries from edges directed towards the vanishing

point, using the color and orientation features of lane borders.

In the experiments, we used the MATLAB code provided by the

authors of [16] , and adjusted it using the training data to suit

better this application. 
• Lane-border detection method (Le et al. [26] ): This method is our

previous work, and it finds two lane borders among the edges

pointing to the vanishing point. Each edge is represented by
 algorithms on the test set. 

call Precision F-measure Processing 

) (%) (%) time (s) 

.7 65.0 63.8 3.04 

.0 89.7 89.3 1.20 

.1 94.9 93.5 1.94 

.5 97.2 95.3 2.81 

oor and outdoor environments. Columns 1, 3, 5 and 7: input images. Columns 2, 4, 

ces to color in this figure legend, the reader is referred to the web version of this 
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two features: (i) the color difference between two regions adja-

cent to the edge, and (ii) the orientation difference of neighbor-

ing pixels to the edge. Each region formed by a pair of edges is

described by two features: (i) its color uniformity, and (ii) the

direction of the bisector of the edges. A pair of edges is con-

sidered as the lane borders if the likelihood of their edge and

region features is the highest among all pairs. This method does

not use lane segmentation technique proposed in Section 3.3 . 

Table 7 shows the performance of different methods for pedes-

rian lane detection on the test set of 1500 images. Using the RGB

olor space, the proposed method had a recall rate of 92.1%, a pre-

ision rate of 94.9%, and an F-measure of 93.5%. Using the IIS color

pace, it achieved a recall rate of 93.5%, a precision rate of 97.2%,

nd an F-measure of 95.3%. 

The proposed method outperformed the edge-based method

16] , which had a recall rate of 62.7%, a precision rate of 65.0%

nd an F-measure of 63.8%. The edge-based method uses only the

olor and orientation properties of lane borders, and it is therefore

usceptible to background edges. In contrast, the proposed method

mploys the properties of not only lane borders but also lane re-

ions (appearance and shape). 

The proposed method also had better recall and precision rates

han the lane-border detection method [26] (recall rate of 89.0%,

recision rate of 89.7% and F-measure of 89.3%). The lane-border

etection method finds the lane borders from edges pointing to

he vanishing point, and hence it only detects straight lanes or the

traight part of curved lanes. 

Fig. 7 shows pedestrian detection results of different methods.

he results show the robustness and effectiveness of the proposed

ethod compared with the previous methods [16,26] . These

esults also demonstrate that the proposed method using the IIS

olor space is more robust than using the RGB color space. 

Table 7 also shows the average processing time per test im-

ge of the lane detection methods. These processing times were

ecorded for MATLAB implementation and an image size of 100

140 pixel on a PC with 3.4 GHz CPU. The proposed method

average time 2.81 s) was 1.08 times faster than the edge-based

ethod [16] (average time 3.04 s). The proposed method was 2.60

imes slower than the lane-border detection method (average time

.20 s). Note that the proposed method required only 0.95 s on av-

rage to find the lane border (vanishing point estimation and sam-

le region selection); it required the extra time of 1.86 s for lane

egmentation (i.e. the processing steps described in Section 3.3 ).

evertheless, the processing speed of the proposed method is an

spect that needs to be improved in the future. 

Several outputs of the proposed method are shown in Fig. 8 .

here are some segmentation errors, e.g. in (Row 2, Column 2)

here there is a strong shadow. However, in most cases the lane

s segmented correctly. In summary, the experimental results pre-

ented in this section have shown that the proposed method

an detect pedestrian lanes with various surfaces, under different

maging conditions. 

. Conclusion 

This paper presents a method for pedestrian lane detection in

nstructured environments, by combining color, edge, and shape

eatures. The proposed method uses the vanishing point to au-

omatically determine a sample lane region, from which a lane

odel is adaptively constructed. Evaluation results on a large

ata set have shown that the proposed method is able to de-

ect various types of unstructured pedestrian lanes, in outdoor

nd indoor scenes under challenging environmental conditions. It

lso has higher accuracy compared to two other existing pedes-

rian lane detection methods. The paper also presents an effi-
ient and accurate method based on the color tensor for vanish-

ng point estimation. The proposed methods for vanishing point

etection and pedestrian lane detection can have several applica-

ions, such as assistive navigation for vision-impaired people, in-

elligent wheelchairs, autonomous robots or vehicles operating on

pen roads. 
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